Refine
Keywords
- Boden-Pflanze-System (1)
- Pflanzen (1)
- Priority Effects (1)
- Vorrang (1)
- plant-plant interaction (1)
European species-rich grasslands, which provide many ecosystem functions and services, are threatened both by land use intensification as well as land abandonment. The studies shown in this thesis tested the possible use of ecological knowledge to ensure hay productivity whilst maintaining diversity of grasslands, with a view to informing ecological restoration. The overall approach was to understand interactions between plants, to study diversity effects on productivity, and mainly investigate how plant functional groups that arrive first in the system can create priority effects that influence community productivity both above- and belowground. A grassland field experiment was established and monitored for four years, in order to verify the effects of manipulating the order of arrival of different plant functional groups, as well as the sown diversity level on productivity and methane yield. The overall findings were: a) sowing legumes first created priority effects aboveground (higher biomass) and belowground (lower root length), plants invested less in roots and more in shoots, b) priority effects were more consistent below than aboveground, c) sown diversity did not affect aboveground biomass, d) the order of arrival treatments indirectly affected methane yield by affecting the relative dominance of plant functional groups. Since we lack information on how legumes and non-legumes interact spatially belowground, (particularly related to root foraging) a controlled experiment was performed, using two grass species and one legume. The identity and location of the neighbours played a role in interactions, and the order plants arrived modulated it. When the focal species (grass) was growing with a legume it generally equated to the same outcome as not having a neighbour. Roots from the focal species grew more toward the legume than the grass neighbour, indicating a spatial component of facilitation. Since these studies involved root measurements, a method study was also conducted to verify how comparable and accurate are root length estimates obtained from different techniques. Results showed that the use of different methods can lead to different results, the studied methods did not have the same accuracy, and the automated methods can underestimate the root length. Overall, the results allow to conclude that different groups of plants arriving before others affected above and belowground biomass, roots may be key drivers during the creation of these priority effects, and interaction outcomes between plants depended on neighbour identity and location, modulated by the order they arrive in. Our results suggest that we can use priority effects by sowing different species or plant functional groups at different time to steer a community to a desired trajectory depending on the restoration goal (such as increasing biomass whilst maintaining diversity). However, there is a need to test contingency, potential, and long term impacts of such possible tools for restoration.