Refine
Keywords
- Stachellose Biene (1) (remove)
Loss of natural and semi-natural habitat due to increasing human land use for agriculture and housing has led to widespread declines in bee pollinator diversity and abundance, which raised global concerns about the stability of pollination services. Bee population dynamics depend on floral resource diversity and availability in the surrounding landscape, and loss of plant biodiversity may thus directly impair the fitness of individual bee species. However, whether and how plant and resource diversity and availability affect foraging patterns, resource intake, resource quantity and nutrient quality and ultimately fitness of generalist social bees remains unclear. In this thesis, we placed hives of the Australian eusocial stingless bee Tetragonula carbonaria (Apidae, Meliponini) in natural habitat (subtropical forests) and two landscapes differently altered by humans (suburban gardens and macadamia plantations), varying in plant species richness, resource abundance and respective habitat patch size. Foraging patterns and resource intake were compared between landscapes in different seasons and colony growth and fitness were monitored over two and a half years. Bee foraging activity, pollen and sugar intake, diversity of collected pollen and resin resources, resource quantity (colony food stores), colony fitness (brood volume, queenand worker reproduction) and colony growth overwhelmingly increased with plant species richness in the surrounding habitat. However, plant species richness and thus bee fitness was highest in gardens, not in natural forests, as bees in gardens benefited from the continuous floral resource availability of both natural and exotic plants across seasons. In contrast, foraging rates and success, forager orientation and consequently colony fitness was largely reduced in plantations. While bees maximized diversity of collected resources, collecting more diverse resources did however not increase resource functionality and nutritional quality, which appeared to be primarily driven by the surrounding plant community in our study. Conversely, individual worker fitness (body fat and size) was not affected by available resource diversity and abundance, showing that colonies seem not to increase the nutritional investment in single workers, but in overall worker population size. This thesis consequently revealed the outstanding role of plant biodiversity as a key driver of (social) bee fitness by providing more foraging resources, even when only small but florally diverse patches are available.