Among all attenuation processes, biodegradation plays one of the most important role and is one of the most desirable processes in the environment especially since products released during this bio-reactions, can be once again reintroduced into the natural element cycles. To assess biodegradation, a variety of biodegradation test procedures have been developed by several international organizations. OECD guidelines for ready biodegradability testing represent one of the most prominent group of internationally used screening biodegradation tests (series 301A-F). These tests are usually very simple in their designs and allow for the fast and cheap screening of biodegradability. However, because of their stringency, the test conditions are not close to simulating environmental conditions and may lead to unrealistic results. To overcome these limitations, OECD introduced simulation tests which are designed to investigate the behavior of chemicals in specified environmentally relevant compartments. Despite the fact that simulation tests give more insight into the fate of chemicals in the environment, they are not applied frequently as they are often tedious, time consuming and expensive. Consequently, there is a need to provide a new biodegradation testing method that would combine complex testing environment as in simulation tests, easiness in handling and good data repeatability as in screening biodegradation tests. Another challenge is an adaption of the existing biodegradation testing methods to new types of samples, i.e. mixtures of transformation products (TPs). The research on the presence of pharmaceuticals in the environment gained momentum in the 1990s; since then, it has been growing. Their presence in the environment is a wellestablished fact. A wide range of pharmaceuticals is continuously detected in many environmental compartments such as surface waters, soils, sediments, or ground waters. After pharmaceuticals reach the natural aquatic environment they may undergo a number of processes such as: photolysis (under direct sunlight), hydrolysis, oxidation and reduction reactions, sorption, biodegradation (by bacteria of fungi), and bioaccumulation. These processes, may cause their elimination from aquatic environment, if reaction is complete, or creation of new compounds i.e., transformation products (TPs). What is more, processes, like chlorination and advanced oxidation processes (AOPs), such as H2O2/UV, O3/UV, TiO2/UV, Fenton, and photo-Fenton, or UV treatment which might be applied in water or wastewater treatment, may also lead to the TPs introduction into aquatic environment. The research on the TPs brings many new challenges. From one side, there is a constant need for the the development of a sensitive and reliable analytical separation, detection, and structure elucidation methods. Additionally, there is a need for the preparation of appropriate assays for the investigation of properties of new compounds, especially those answering the question if TPs pose a higher risk to the aquatic ecosystems than their parent compounds. Among numerous groups of pharmaceuticals, two are of great importance: antibiotics since they might promote emergence and maintenance of antimicrobial resistance in the aquatic environment; and cytostatic drugs. Cytostatic drugs can exert carcinogenic, mutagenic and/or teratogenic effects in animals and humans. The challenges of biodegradation testing presented in this thesis, encompasses these different areas of interest and was divided into three objectives: 1) Identification of the knowledge gaps and data distribution of the two groups of pharmaceuticals antibiotics and cytostatic drugs (article I); 2) Increasing the knowledge on biodegradation of cytostatic drugs and their TPs (articles II, III, and IV) and 3) Establishment of a biodegradation test with closer to simulation tests conditions, that could be affordable and to support better understanding on processes in water sediment interface construction - screening water-sediment test. Further validation of the test with an insight into sorption and desorption processes (articles V and VI).
Recent studies have confirmed that the aquatic ecosystem is being polluted with an unknown cocktail of pharmaceuticals, their metabolites and/or their transformation products (TPs). Although individual pharmaceuticals are typically present at low concentrations, their continuous input into the aquatic ecosystem and their toxic and persistent presence are the major environmental concerns. Therefore, it is necessary to assess the environmental risk caused by these aquatic pollutants. Data on exposure are required for quantitative risk assessment of parent compounds and their transformation products (TPs) and/or metabolites. Such data are mostly missing, especially for TPs, because of the non-availability of TPs and very often metabolites for experimental testing. Therefore, the application of different in silico tools for qualitative risk assessment can be used. Also, the presence of these micro-pollutants (active pharmaceutical ingredients, APIs) in the aquatic cycle are increasingly seen as a challenge to the sustainable management of water resources worldwide due to ineffective effluent treatment and other measures for their input prevention. Given the poor prognosis for effluent treatment (‘end of the pipe’ approach) for input prevention of APIs in the environment, it is necessary to focus on the ‘beginning of the pipe’ strategy. The very beginning of the pipe is the molecules themselves. Therefore, novel approaches are needed like designing greener pharmaceuticals, i.e. better biodegradable ones in the aquatic environment after their release. Therefore, the present research work focused on two important topics a) assessment of the environmental risk associated with the presence of highly prescribed drugs and their TPs; b) demonstrating the feasibility of the ‘benign by design’ concept for designing biodegradable drug derivatives, which will have the better biodegradability in the environment after their release. The present thesis includes four research articles (1-4) which address these approaches. The first article is about the qualitative environmental risk assessment using the example of transformation products formed during photolysis (photo-TPs) of Diatrizoic acid (DIAT). Photolysis is the chemical reaction in which the compound is broken down by photons and often in combination with hydroxyl radicals. Photolysis is the most common abatement process of micro-pollutants in the environment. The qualitative risk assessment of DIAT and selected photo-TPs was performed by the PBT approach (i.e. Persistence, Bioaccumulation and Toxicity), using chemical analysis, experimental biodegradation test assays, QSAR models with several different toxicological endpoints and in silico read-across approaches. The second article addresses a tiered approach of implementing green and sustainable chemistry principles for theoretically designing better biodegradable and pharmacologically potent pharmaceuticals derivatives. Photodegradation process coupled with LC-MSn analysis, biodegradability testing and in silico tools such as quantitative structure-activity relationships (QSAR) analysis and molecular docking proved to be a very significant approach for the preliminary stages of designing chemical structures that would fit into the ´benign by design´ concept in the direction of green and sustainable pharmacy. Metoprolol (MTL) was used as an example. The third article was also the conceptual framework to get new drug derivatives that are biodegradable in order to tackle the global challenge of micro-pollutants in the aquatic cycle. This study increased the knowledge about the role of the attachment of certain functionalities to the parent drug molecule for its biodegradability whilst conserving drug-likeness. This approach was in the past a totally neglected issue within drug development. Atenolol (ATL), a selective β1 blocker, was selected as an example to incorporate the additional attribute such as biodegradability into its molecular structure while conserving its substructures responsible for β adrenergic receptor blocker activity. In fourth article, the concept of designing green biodegradable pharmaceuticals has been proven through expanded experimental analysis setting out from the experiences collected as described in article two and three. This study could be considered as a more extensive feasibility study of rational design of green drug derivatives. The non-selective β-blocker Propranolol (PPL) was used as an example. The risk assessment study (Article #1) contributes in enhancing the existing knowledge about the life cycle and behavior (fate) of pharmaceuticals with a special focus on photo-TPs which are generally formed during advanced effluent treatment and enter as such into the environment. Based on the obtained results, the application of the in silico tools for qualitative risk assessment analysis increased knowledge space about the environmental fate of TPs in case of their non-availability for experimental testing. The benign by design studies (Article #2-4) were based on the knowledge and experience collected during the work on DIAT. It demonstrated the feasibility of a novel approach of designing comparatively better degradable and pharmacological potent derivatives through the implementation of ´green chemistry´ principles. However, the present approach is in the juvenile stage and further knowledge has to be collected beforehand for the full implementation of this approach into drug development.