543 Analytische Chemie
Refine
Pestizide werden als Pflanzenschutzmittel im landwirtschaftlichen Bereich und als Biozi-de z. B. in der Industrie, in Haushalten und Kommunen eingesetzt. Bereits auf den behandel-ten Flächen (z. B. auf Äckern oder Hausfassaden) und in den angrenzenden Gewässern kön-nen Pestizide Abbauprozessen durch u. a. Photolyse unterliegen. Diese Prozesse führen zur Entstehung von Transformationsprodukten (TP), deren Berücksichtigung bei der Umweltrisi-kobewertung für ein umfassendes Risikomanagement von großer Bedeutung ist. Doch gibt es über die in der Umwelt vorkommenden Transformationsprozesse und die dabei entstehenden TP immer noch Wissenslücken. Darüber hinaus sind die Eintragswege von TP, vor allem von Biozid-TP, in die angrenzenden Gewässer zum Teil unbekannt. Da eine Vielzahl von TP mit unterschiedlich starken ökotoxikologischen Effekten bewertet werden muss, besteht ein gro-ßer Bedarf an schnellen und umfassenden Methoden, um die stetig wachsende Anzahl an Chemikalien auf dem Markt erfassen zu können. Das Ziel der vorliegenden Arbeit ist daher, das Verhalten und den Verbleib ausgewählter Pestizid-TP in der aquatischen Umwelt zu ana-lysieren. Zu diesem Zweck wurden unterschiedliche Phototransformationsprozesse von Pesti-ziden sowie der Eintrag aus Fassaden über Regenwasserversickerungsanlagen (RVA) in an-grenzenden Gewässern der Stadt Freiburg untersucht. Schlussendlich erfolgte die Identifizie-rung der ökotoxikologischen Eigenschaften von 45 Pestizid-TP in einem mehrstufigen Ansatz durch die Kombination experimenteller und computerbasierter Methoden. Inwiefern unterschiedliche Phototransformationsprozesse zu unterschiedlichen TP führen, wurde im ersten Teil der Arbeit durch einen Vergleich der Entstehung von TP durch direkte und indirekte Photolyse der Substanzen Penconazol, Terbutryn und Mecoprop untersucht. Weiterhin wurde der Abbau durch die Bestrahlung mit unterschiedlichen Xenonlampen unter-sucht. Die Ergebnisse zeigen, dass unterschiedliche Phototransformationsprozesse zu unter-schiedlichen TP führen können. So entstanden durch indirekte Photolyse von Mecoprop un-terschiedliche TP im Vergleich zu den TP, die durch direkte Photolyse gebildet wurden. Wo-hingegen kein Unterschied der Entstehung der TP von Penconazol und Terbutryn festgestellt wurde. Der Vergleich von drei verschiedenen Xenonlampen zur Simulation von Photolyse im Labormaßstab zeigte, dass eine genaue Spezifizierung der Lampen hinsichtlich des emittierten Spektralbereich sowie der absoluten Photonenflussdichte notwendig ist. Auf diese Weise können künftig Fehler bezüglich der Geschwindigkeit des direkten Abbaus insbesondere von schwach absorbierenden Pestiziden vermieden werden. Im zweiten Teil der Arbeit wurde der Eintrag von Bioziden, die in Fassadenanstrichen An-wendung finden, und deren TP über Regenwasserversickerungsanlagen in das Grundwasser untersucht. Dabei wurden qualitative und quantitative Target-Screening-Methoden zum Nachweis und zur Quantifizierung bekannter und unbekannter TP der Biozide Diuron, Ter-butryn und Octhilinon (OIT) in der aquatischen Umwelt mittels Flüssigkeitschromatographie mit gekoppeltem Massenspektrometer (LC-MS) kombiniert. Die Untersuchung zeigt, dass der gewählte methodische Ansatz einen wichtigen Beitrag zur Identifikation von Eintragspfaden in Gewässer leisten kann. Auf diese Weise wurden erstmalig dezentrale Versickerungssyste-me als Eintragspfad für biozide Wirkstoffe und insbesondere deren TP ins Grundwasser iden-tifiziert. Weiterhin wurden Fassaden als Quelle von Biozid-TP durch die Ausgangssubstanz Diuron und des TP-219 anhand eines Beregnungsexperiments einer 14-jährigen Hausfassade festgestellt..
Die ökotoxikologischen Eigenschaften von 45 Pestizid-TP wurden im dritten Teil dieser Ar-beit in einem mehrstufigen Ansatz untersucht. Dafür erfolgten auf der ersten Stufe eine Lite-raturauswertung und die Anwendung computerbasierter Methoden, um die bakterielle Ökoto-xizität und Genotoxizität zu ermitteln. Im Fall von toxischen Hinweisen wurden photolytische Mischungen durch Photolyse der Ausgangssubstanzen hergestellt. Diese wurden auf der zwei-ten Stufe in einem Leuchtbakterientest hinsichtlich der akuten und chronischen Ökotoxizität und der Wachstumshemmung untersucht. Die Genotoxizität wurde in einem Umu-Test ermit-telt. Bestätigten sich die positiven Befunde, erfolgten auf der dritten Stufe Einzeluntersuchun-gen der TP durch die zuvor genannten Tests. Die Ergebnisse legen nahe, dass mit Hilfe des mehrstufigen Verfahrens eine schnelle und umfassende Ersteinschätzung der Ökotoxizität von Pestizid-TP erfolgen kann. Dabei bietet vor allem die Kombination von computerbasierten Methoden und experimentellen Tests die Möglichkeit einer Vielzahl von Substanzen gerecht zu werden und auch schwer synthetisierbare und analysierbare Substanzen einzubeziehen. So konnten mit Hilfe des Ansatzes 96 % der TP bewertet werden.
Insgesamt zeigte sich, dass die Berücksichtigung von TP im Rahmen von Gewässerüberwa-chung und Risikobewertung eine genauere Abschätzung der Risiken durch Schadstoffe er-möglicht. Die in dieser Dissertation entwickelte Vorgehensweise, bei der TP zunächst im La-bor erzeugt und bewertet und anschließend in aquatischen Systemen gezielt analysiert wer-den, kann einen wichtigen Beitrag zur Regulatorik des Einsatzes und der Zulassung von Pes-tiziden leisten. Die Arbeit liefert wichtige Erkenntnisse und Methodenvorschläge um, im Sin-ne der Ziele einer nachhaltigen Entwicklung der Vereinten Nationen, einer Verschmutzung der Gewässer in qualitativer und quantitativer Hinsicht vorzubeugen.
The presence of pharmaceutical drugs and their by-products as environmental organic contaminants in a variety of eco-systems and their potential environmental impacts is a well-known aspect and has been raised in recent years. Studying the transformation of pharmaceutical drugs in the aquatic system is very important as it can lead to the formation of many new transformation products (TPs) that can have different properties (e.g. more mobile, toxic or present at higher concentrations) and this can enable them to reach the environmental compartments not affected by their parent compounds. Yet, many of the pharmaceutical drugs are not well regulated or controlled and they can cause a lot of adverse ecological and/or human health effects. In addition, impact of the continuous change in the environmental conditions such as pH, temperature and initial concentration on the transformation behaviour of pharmaceuticals is overlooked in many researches although it is of high interest.
Psychotropic drugs are among the pharmaceuticals which their potential hazards including environmental fate and behaviour is still not well understood compared to other drugs such as antibiotics. Psychotropic drugs are highly used, and their worldwide consumption has been increasing nowadays especially in developed countries such as Europe and the United States. Furthermore, they are highly found in different environmental compartments and can cause a lot of toxicological problems. Trimipramine (TMP), Desipramine (DMI) and Chlorprothixene (CPTX) are three psychotropic drugs with closely related chemical structures and they are selected to be studied in this thesis as they are among the worldwide commonly prescribed psychotropic drugs and data available on their environmental fate (e.g., degradation or transformation and fate of the TPs) is lacking in the environmental researches.
To investigate the ecological impact of the pharmaceuticals on water organisms and to study their fate in the aquatic system, laboratory biodegradation and photodegradation tests are recommended. The use of LC-MS/MS analysis with the combination of photolysis and biodegradation tests to identify the formed TPs and to study the biodegradability and the persistence of the TPs is a helpful new insight into the environmental behaviour of contaminants and their TPs. Different environmental conditions can affect the fate of pharmaceuticals in the environment, therefore answering the question how different variables such as temperature, pH and initial concentration could affect the degradation pattern of pharmaceuticals can provide valuable information regarding their environmental fate. Toxicity assessments of contaminants and their TPs using in-silico software based on quantitative structure activity relationship (QSAR) models can be a good choice especially in case of TPs because the TPs are mostly not available commercially and II
are usually only formed in low concentrations within complex matrices so that isolation and purification are very difficult.
Accordingly, the principle of this thesis was to study the environmental fate of three highly used psychotropic drugs and this achieved through: 1) examining the biodegradability of TMI, DMI and CPTX, 2) studying the behaviour of TMP, DMI and CPTX in photodegradation tests using Xe and UV lamps with studying the effect of different environmental conditions on their UV-photodegradation behaviour, 3) monitoring the primary elimination of TMP, DMI and CPTX during photodegradation and biodegradation tests using HPLC, and measuring their degree of mineralization by means of dissolved organic carbon analyser (DOC), 4) elucidating the structures of the TPs which formed during the degradation of TMI, DMI and CPTX by using LC-MS/MS analysis, 5) analysing the biodegradability of their TPs by laboratory tests and in-silico assessments in order to determine the fate and persistence of these TPs in the aquatic environment, 6) conducting in-silico toxicity predictions for the selected psychotropic drugs and their TPs in human (carcinogenicity, genotoxicity and mutagenicity) and in eco-system (toxicity to microorganisms and toxicity in rainbow trouts).
TMP, DMI and CPTX were found to be not readily biodegradable in Closed Bottle test (CBT), and in Manometric Respiratory test (MRT). They did not show any significant elimination or mineralization within 128 minutes of irradiation using a xenon Lamp. In UV-photodegradation samples, LC-MS/MS results showed elimination of the three psychotropic drugs with corresponding comparatively lower degrees of mineralization indicating formation of abundant photo-TPs.
From the UV-photolysis tests, which were carried out under different environmental conditions, it can be concluded that the degradation rates of TMP, DMI and CPTX decreased when their initial concentrations increased. pH affected the photodegradation behaviour of TMP, DMI and CPTX with different pattern depending on many factors such as solubility, molar absorption coefficient (ɛ), ionisation form and chemical structure. Temperature elevation showed non-significant effect on the photodegradation performance of DMI and CPTX, while showed an enhanced effect on the photodegradation performance of TMP. This could be because the molecules of DMP and CPTX can reach the sufficient energy required for degradation at low temperature. While TMP`s molecules still require some more energy to undergo degradation and temperature helps them to reach easily these required activation energy.
Elucidating the TPs and studying the degradation pathways for TMP, DMI and CPTX during UV irradiation indicated that hydroxylation is the most abundant pathway followed by oxidation and isomerization. De-chlorination pathway was observed during the UV-transformation of CPTX.
III
Deamination and loss of the aliphatic side chain were observed only during the UV-transformation of TMP, while not observed during DMI and CPTX transformation. This indicates that the bond between the amino- group and the aliphatic side chain in DMI and CPTX can be more resistant to photodegradation compared to the same bond in TMP. This could be due to the presence of extra methyl groups in TMP molecule which can decrease the previously mentioned bond strength.
Biodegradation tests performed for photodegradation mixtures, which contain the psychotropic drugs and their TPs, showed low biodegradation results. Despite that, elimination of some TPs was observed in the LC-MS/MS analysis at the end of these biodegradation tests. This indicates the probability of biodegradation ability for some TPs and this ability was hindered by the predominant effect of other non-biodegradable compounds. In-silico predictions showed that for many endpoints, photo-transformation might lead to an increased toxicity in humans and to water organisms compared with the parent compound.
As an overall conclusion, the present work demonstrates that a combination of laboratory simulation tests, LC-MS/MS analysis and in-silico tools result in valuable new information regarding environmental fate of three important psychotropic drugs and their TPs. This dissertation also highlights that different environmental conditions such as temperature, initial drug concentration and pH can differently affect the degradation behaviour of pharmaceuticals even when they are highly structurally related. Therefore, one cannot conclude from one pharmaceutical to another but each one needs to be investigated individually and this present a great challenge for risk assessment kinetics of chemicals in the aquatic environment. The results presented here showed that the investigated pharmaceuticals and their TPs can negatively affect the environment which may be harmful to the ecosystem as they might have been present for decades in the aquatic environment without any knowledge of their environmental fate or connected risk. Therefore, further work needs to be done including analysis of environmental samples (e.g., surface waters), as well as laboratory toxicity tests to further expand knowledge on their exact environmental impact.