Refine
Wind energy is expected to become the largest source of electricity generation in Europe’s future energy mix with offshore wind energy in particular being considered as an essential component for secure and sustainable energy supply. As a consequence, future electricity generation will be exposed to an increasing degree to weather and climate. With planning and operational lifetimes of wind energy infrastructure reaching climate time scales, adaptation to changing climate conditions is of relevance to support secure and sustainable energy supply. Premise for success of wind energy projects is the ability to service financial obligations over the project lifetime. Though, revenues(viaelectricity generation) are exposed to changing climate conditions affecting the wind resource, operating conditions or hazardous events interfering with the wind energy infrastructure. For the first time, a procedure is presented to assess such climate change impacts specifically for wind energy financing. At first, a generalised financing chain for wind energy is prepared to(qualitatively) trace the exposure of individual cost elements to physical climate change. In this regard, the revenue through wind power production is identified as the essential component within wind energy financing being exposed to changing climate conditions. This implies the wind resource to be of crucial interest for an assessment of climate change impacts on the financing of wind energy. Therefore, secondly, a novel high-resolution experimental modelling framework with the non-hydrostatic extension of the regional climate model REMO is set up to generate physically consistent climate and climate change information of the wind resource across wind turbine operating altitudes. With this setup, enhanced simulated intra-annual and inter-annual variability across the lower planetary boundary layer is achieved, being beneficial for wind energy applications, compared to state-of-the-art regional climate model configurations. In addition, surrogate climate change experiments with this setup disclose vertical wind speed changes in the lower planetary boundary layer to be indirectly affected by temperature changes through thermodynamically-induced atmospheric stability alterations. Moreover, air density changes are identified to occasionally exceed the net impact of wind energy density changes originating from changes in wind speed. This supports the consideration of air density information (in addition to wind speed) for wind energy yiel assumptions. Thirdly, the generated climate and climate change information of the wind resource are transferred to a simplified but fully-fledged financial model to assess the financial risk of wind energy project financing with respect to changing climate conditions. Sensitivity experiments for an imaginary offshore wind farm located in the German Bight reveal the long-term profitability of wind energy project financing not to be substantially affected by changing wind resource conditions, but incidents with insufficient servicing of financial obligations experience changes exceeding -10% to 14%. The integration of wind energy-specific climate and climate change information into existing financial risk assessment procedures would illustrate a valuable contribution to enable climate change adaptation for wind energy. In particular information about intra-annual and inter-annual variability change of the wind resource originating from changing climate conditions permit the quantification of additional financial risk associated to debt repayment obligations and, subsequently, enable the development of suitable preventive economic measures. Though, additional efforts in combination with future technical development are necessary to provide essential additional information about the bandwidth of climate change and uncertainties associated to such sector-specific climate and climate change information.