Refine
Year of publication
- 2016 (2) (remove)
Language
- English (1)
- Multiple languages (1)
Keywords
- Arzneimittel (2)
- Abwasser (1)
- Abwasserkonzentration (1)
- Active pharmaceutical ingredient (1)
- Arzneistoff (1)
- Closed Bottle Test (1)
- Druckmessung (1)
- Fotolyse (1)
- Genotoxicity (1)
- Gentoxikologie (1)
After being administrated to humans or animals, pharmaceuticals may be metabolized by a variety of mechanisms and pathways within the body. Once these compounds and/or their metabolites are excreted, they may undergo degradation in the aquatic environment. Unfortunately, a rapid and complete mineralization cannot always be guaranteed, whereas relatively stable transformation products (TPs) may be formed. The largest part of older studies focused on investigation of the elimination kinetics of parent compounds without considering the amount and chemical structure of individual TPs. Only recently, there is an increasing trend to deliver such information. Nevertheless, since drugs are defined as significant environmental pollutants, it is not only important to elucidate their TPs, but also necessary to investigate whether these formed compounds preserve the same mode of action as the parent compound or are even more toxic. Thus, two main objectives of this thesis can be formulated. Firstly, to highlight the concern originated by metabolites and transformation products of pharmaceuticals that contaminate the environment. Hereby, the already-published knowledge on TPs within a certain selection of drugs is assessed to exemplify the number and quality of the existing information on their TPs. Secondly, to particularly investigate the fate of the antibiotic ciprofloxacin (CIP). This is done by (a) evaluating the suitability and sustainability of the photolytic decomposition as an advanced water treatment technique, (b) monitoring the course of genotoxicity of the irradiated mixtures using a battery of genotoxicity and cytoxicity in vitro assays, and (c) considering the potential genotoxicity for CIP´s individual TPs by the employment of in silico approaches using quantitative structure activity relationships (QSAR) models. This thesis based on the results and conclusions of five articles, which can be found in the appendix. A systematic literature review was conducted on the current state of knowledge on pharmaceuticals and its derivatives in the environment. Two groups, namely antibiotics and anticancer drugs, were considered more closely with respect to the availability of chemical structures for their TPs. Furthermore, the photodegradation of CIP as well as a preliminary toxicity assessment of its identified TPs were investigated in three research papers. An extensive review with a table at its core shows the existing data on 158 TPs, which already have an assigned registry number in chemical abstracts service (CAS-RN), was presented. In total, 294 TPs, identified with chemical structures in the literature, were found for 15 compounds out of the 21 that were selected as target compounds. Eleven TPs, created from CIP, were identified by high-performance liquid chromatography/high-resolution multiple-stage mass spectrometry. It was detected that the transformation of CIP mainly occurred through substitution of fluorine, defluorination, hydroxylation of the quinolone core and the breakdown of the piperazine ring. Some of the identified TPs of CIP were predicted as genotoxic by QSAR analysis, while the experimental testing for a few genotoxic and cytotoxic endpoints showed that the potential of the resultant mixtures could be primarily dependent on the concentration of residual CIP. In contrast, irradiation mixtures were neither mutagenic in the Ames Test nor genotoxic in the in vitro Micronucleus Test. It is possible that the effect of the TPs was masked by antagonistic mixture interactions and/or they were not formed at effectively concentrations. Nevertheless, all of the identified TPs of CIP still retained the core quinolone moiety, which is responsible for the biological activity. Thus, a more comprehensive assessment, encompassing more genotoxic endpoints, chemical analysis characterization and exposure analyses, needs to be conducted. Information available on TPs demonstrates that already slight changes in treatment conditions and processes result in the formation of different TPs. Nevertheless, most of the transformation products could neither be identified nor fully assessed regarding their toxicity. This, in turn, presents a major challenge for the identification and assessment of TPs. Hence, from a practical and sustainability point of view, limiting the input of pharmaceuticals into effluents as well as improving their (bio)degradability and elimination behavior, instead of only relying on advanced effluent treatments, is urgently needed. Solutions that focus on this
Verbräuche von Arzneistoffen, die auf das menschliche Nervensystem wirken (Neurologika), unterliegen aufgrund der auf dem Markt befindlichen Arzneistoffvielfalt einem ständigen Wandel. Zudem waren die Haupteintragspfade für Neurologika in die aquatische Umwelt bisher nicht eindeutig geklärt. Haushalte (diffuser Eintrag) und Einrichtungen des Gesundheitswesens (punktueller Eintrag), wie psychiatrische Fachkliniken oder Pflegeheime, wurden als maßgebliche Eintragspfade diskutiert. Ziel dieser Arbeit war es deshalb, Arzneimittelverbräuche und damit verbundene Arzneistoffemissionen durch Haushalte und Einrichtungen des Gesundheitswesens mit Hilfe einer neu entwickelten Methode abzuschätzen. Bei dieser Methode wurde das jeweilige Ausmaß der Emissionen durch die Kalkulation von Abwasserkonzentrationen und den Vergleich von Verbrauchsmengen an Arzneistoffen bestimmt. Im Ergebnis konnte gezeigt werden, dass sich Arzneimittelverbrauchsmuster in psychiatrischen Fachkliniken und Pflegeheimen von denen in allgemeinen Krankenhäusern und Haushalten unterscheiden. Außerdem konnte mit dieser Methode deren jeweiliger Beitrag am gesamten Arzneistoffeintrag in das kommunale Abwasser eingeschätzt und in hohen Mengen in das Abwasser eingetragene Arzneistoffe identifiziert werden. Durch Haushalte wurde das hinsichtlich des Umweltverbleibs und -verhaltens wenig untersuchte Antiepileptikum Gabapentin in hohen Mengen in das Abwasser eingetragen. Die Bedeutung von Einrichtungen des Gesundheitswesens am Arzneimitteleintrag in das kommunale Abwasser konnte für alle untersuchten Einrichtungstypen im Vergleich zu Haushalten als gering eingestuft werden. Bestimmte einrichtungstypische Arzneistoffe, insbesondere Neurologika, können bei regionaler Betrachtung jedoch eine größere Rolle spielen. Insbesondere Quetiapin wurde in psychiatrischen Fachkliniken und Pflegeheimen als Substanz mit hohen Verbrauchsmengen und hohem Emissionspotential identifiziert. Ausgehend von diesen Erkenntnissen wurden Gabapentin und Quetiapin tiefergehend hinsichtlich ihres Verbleibs und ihres Verhaltens in der aquatischen Umwelt charakterisiert. Beide Arzneistoffe wurden bei verschiedenen Startkonzentrationen zur Simulation eines technischen Behandlungsverfahrens mit UV-Licht bestrahlt. Im weiteren Verlauf wurden Gabapentin und Quetiapin und die jeweilige Muttersubstanz im Gemisch mit gebildeten Phototransformationsprodukten hinsichtlich biologischer Abbaubarkeit im Closed Bottle Test und im Manometrischen Respirationstest nach OECD-Richtlinien und hinsichtlich toxischer Eigenschaften im Leuchtbakterientest und im Umu-Test beurteilt. Die Strukturaufklärung von Photo- und Biotransformationsprodukten erfolgte mittels hochauflösender Massenspektrometrie. Im Ergebnis konnten weder Gabapentin noch Quetiapin bei hohen Startkonzentrationen durch Photolyse über 128 min mineralisiert oder vollständig eliminiert werden. Identische Phototransformationsprodukte wurden bei unterschiedlichen Startkonzentrationen für die UVBehandlung gebildet. Die Arzneistoffe Gabapentin und Quetiapin waren nach OECD-Richtlinien im Closed Bottle Test nicht leicht biologisch abbaubar. Die photolytischen Gemische von Gabapentin sind nicht besser als Gabapentin selbst abbaubar und die Phototransformationsprodukte wurden im Closed Bottle Test ebenfalls nicht eliminiert. Auch das photolytische Gemisch von Quetiapin im Closed Bottle Test war nicht besser biologisch abbaubar als Quetiapin selbst. Die Phototransformationsprodukte von Quetiapin und Quetiapin selbst unterlagen beim Closed Bottle Test und im Manometrischen Respirationstest verschiedenen biologischen Transformationsprozessen und führten zur Bildung von verschiedenen Biotransformationprodukten. Das in biologischen Abbautests von Quetiapin maßgeblich gebildete Biotransformationprodukt BTP 398 konnte in diversen Flusswasserproben nachgewiesen werden. Dies lässt sich höchstwahrscheinlich damit erklären, dass BTP 398 unter anderem auch beim humanen Metabolismus gebildet wird. Die Langzeit-Leuchthemmung und die Zellvermehrungshemmung im Leuchtbakterientest stiegen im Verlauf der Photolyse von Gabapentin durch Bildung von Phototransformationsprodukten. Dies deutet auf eine erhöhte Toxizität der Phototransformationsprodukte im Vergleich zu Gabapentin hin. Bei Quetiapin war unter Photolyse keine Abnahme der schon vorhandenen Toxizität beim Leuchtbakterientest zu erkennen. Gabapentin, Quetiapin und deren Phototransformationsprodukte wiesen im Umu-Test keine Genotoxizität auf. …