Refine
Keywords
- Aquatic environment (1)
- Aquatisches Ökosystem (1)
- Biodegradation (1)
- Biologischer Abbau (1)
- Fotolyse (1)
- Hydrological tracers (1)
- Pesticide formulation (1)
- Pestizid (1)
- Photolysis (1)
- Tracer (1)
Institute
- Institut für Nachhaltige Chemie und Umweltchemie (INUC) (1) (remove)
Uranine (sodium fluorescein, UR) has been routinely used in hydrological research to monitor surface and subsurface water flow, transport and mixing processes since the end of nineteenth century. Based on such obtained data, further conclusions can be drawn on the spread and behavior of pollutants (partly on models). Use of UR for qualitative (visual) studies of underground contamination is common, however data available on its environmental behavior (e.g., conversion, degradation or formation and fate of the transformation products, TPs) are incomplete or not readily comparable. UR observations of biodegradation are still speculative. S-metolachlor (SM) is a popular worldwide chloroacetamide herbicide, which highly correspond to the global pesticide use. It is offered on the French market as an effective multicrop herbicide against annual grasses and certain broadleaf weeds under the trade name Mercantor Gold (MG). Photodegradation contributes to the fate of SM in the aquatic environment. TPs were already found in surface and groundwater. However, further fate and assessment of the TPs was not done. Moreover, adjuvants in MG´s formula can affect the solubility, biodegradation, photolysis and sorption properties of the active compound SM. TPs can have different properties (e.g. more mobile, toxic or present at higher concentrations) that enable them to reach the environmental compartments not affected by the parent compound (PC) itself. To assess the ecological impact of pesticides, tracers, and their respective TPs on water organisms, their behavior can be investigated in laboratory screening biodegradation tests. Yet, incomplete data was available on SM, MG and UR transformation or their photo- TPs´ fate in surface and water-sediment systems. The combination of photolysis with aerobic biodegradation in order to identify persistent photo-TPs could provide new insight into the environmental behavior of the selected compounds. Therefore, principle of this thesis was to 1) identify the impact of MG´s adjuvants on the biodegradation, photolysis (Xe lamp) and sorption compared to the SM alone, 2) examine the photolysis and biodegradability of UR 3) monitor the primary elimination (photolysis) of the PCs by HPLC (-UV, -FLD) and measure the degree of mineralization by means of nonpurgeable organic carbon (NPOC) 4) elucidate the photo-TPs of SM, MG and UR by using LCMS/ MS 5) analyze biodegradability of the photo-TPs in order to determine their fate and persistence in aquatic environment 6) conduct in silico toxicity predictions (pesticides) in human (carcinogenicity, genotoxicity and mutagenicity) and eco-toxicity (microtoxicity, bioconcentration factor and toxicity in rainbow trouts). SM, MG and UR were found not readily biodegradable in Closed Bottle test (CBT), Manometric Respiratory test (MRT) and in water-sediment test (WST). Chemical analysis of photolysis samples showed higher elimination of SM in MG compared to SM alone whereas UR displayed high primary elimination rate in general. The overall low degree of mineralization indicated that abundant photo-TPs were formed. Furthermore, the photo-TPs were found not biodegradable in performed biodegradation tests. Only small degradation rates for UR could be observed in the CBT and WST. Additionally, in the MRT and WST new bio-TPs were generated from the photo-TPs of SM and SM in MG. Obtained results suggest that the MG formulation did not significantly affect the biodegradation, however it influenced the diffusion of the active substance (SM) to sediment and potentially affected the photolysis efficiency, which might result in faster formation of photo-TPs in the environment. In silico predictions showed that for many endpoints, biotransformation might lead to an increased toxicity in humans and to water organisms compared with the parent compound SM. No indications were found for UR toxicity. Still, target-oriented investigations on long term impacts of photo-TPs from UR are warranted. The present work demonstrates that a combination of laboratory tests, analytical analysis and in silico tools result in valuable information regarding environmental fate of the TPs from selected compounds. Furthermore, it was shown that photo-TPs formed in the aquatic environment should be taken into account not only the parent compound and its decay.