Refine
Keywords
- Absetzen (1)
- Abwasserreinigung (1)
- Algenkultur (1)
- Bakterien (1)
- Nährstoffentzug (1)
- algal-bacterial culture (1)
- bacterial composition (1)
- nutrient removal (1)
- settleability (1)
- wastewater treatment (1)
Algae-bacteria-based biotechnology has received more and more attention in recent years, especially in the subtropical and tropical regions, as an alternative method of conventional multistep wastewater treatment processes. Moreover, the algal biomass generated during wastewater treatment is regarded as a sustainable bioresource which could be used for producing biofuel, agricultural fertilizers or animal feeds. Although this technology is attractive, a number of obstacles need to be solved before large-scale applications. The main purposes of this work are to find more effective biomass harvesting strategies and develop high-effective algal-bacterial systems to improve wastewater treatment performance, biomass generation rate and biomass settleability. A wastewater-borne algal-bacterial culture, cultivated and trained through alternate mixing and non-mixing strategy, was used to treat pretreated municipal wastewater. After one month cultivation and training, the acclimatized algal-bacterial system showed high carbon and nutrient removal capacity and good settleability within 20 minutes of sedimentation. Algal biomass uptake was the main removal mechanism of nitrogen and phosphorus. The biomass productivity, nitrogen and phosphorus accumulation in biomass during the wastewater treatment process were investigated. The characterization of the microbial consortium composition in the enriched algal-bacterial system provided new insights in this research field. Aerobic activated sludge which already showed good settleability was used as bacterial inoculum to enhance the wastewater treatment performance and biomass settleability of algal-bacterial culture. The influence of different algae and sludge inoculum ratios on the treatment efficiency and biomass settleability was investigated. There was no significant effect of the inoculation ratios on the chemical oxygen demand (COD) removal. But algae/sludge inoculum ratio of 5 showed the best nitrogen and phosphorus removal efficiencies (91.0 ± 7.0% and 93.5 ± 2.5%, respectively) within 10 days. Furthermore, 16S rDNA gene analysis showed that the bacterial communities were varying with different algae and sludge inoculation ratios and some specific bacteria species were enriched during the operation. Four commonly used and high-potential microalgae species including one cyanobacteria (Phormidium sp.) and three green microalgae species (Chlamydomonas reinhardtii, Chlorella vulgaris and Scenedesmus rubescens) were cultivated and trained through alternate mixing and non-mixing strategy for tertiary municipal wastewater treatment. After one month of cultivation, the four microalgae species were compared in terms of biomass settleability, nutrient removal rates and biomass productivity. The three green microalgae showed good settleability within 1 h sedimentation and had higher biomass generation rates (above 6 g/m2/d). The nutrient removal efficiencies were 99% for the four selected microalgae species but within different retention time, resulting in 3.66 ± 0.17, 6.39 ± 0.20, 4.39 ± 0.06 and 4.31 ± 0.18 mg N/l/d (N removal rate) and 0.56 ± 0.07, 0.89 ± 0.05, 0.76 ± 0.09 and 0.60 ± 0.05 mg P/l/d (P removal rate) for Phormidium sp., Chlamydomonas reinhardtii, Chlorella vulgaris and Scenedesmus rubescens, respectively. A mixed algal culture composed of three selected high-effective green microalgae (Chlamydomonas reinhardtii, Chlorella vulgaris and Scenedesmus rubescens) was used for tertiary municipal wastewater treatment. The key biotic factor (algal inoculum concentration) and abiotic factors such as illumination cycle, mixing velocity and nutrient strength were studied. Based on the nitrogen and phosphorus balance, it was found that assimilation into algal biomass was the main removal mechanism.