Refine
Excessive fertilizer use leads to nutrient imbalances and losses of these to the environment through leaching, runoff and gaseous emissions. Nutrient use efficiency (NUE) in agriculture is often low and improving it could increase the sustainability of agricultural systems. The main aims of this thesis were to gain a better understanding of plant-soil-microbe interactions in order to improve agricultural NUEs. The studies included experimentally tested how crops respond to addition of high carbon amendments, fertilizer application rates and timing, and crop rotations. Furthermore, methods for measurement of roots were compared and a protocol for measurement of roots was developed.
The first experiment simulated an agricultural field using mesocosms. In this setting, we tested the effect of 4 previous crops (precrops), which either had or did not have a symbiosis with arbuscular mycorrhizal fungi (AMF)/rhizobia, on the focal crop (winter barley). We also tested the addition of high carbon amendments (wheat straw/sawdust) for immobilization of residual soil nitrogen (N) at harvest of the previous crop. Overall, the findings were that non-AMF precrops had a positive effect on winter barley yield compared to AMF precrops. Wheat straw reduced N leaching, whereas sawdust addition had a negative effect on the yield of winter barley.
Root traits are often measured in static environments, whereas agricultural fertilizer is applied once or multiple times at different crops growth stages. The second experiment tested the effect of different fertilizer (N/phosphorus (P)) application timings on plant traits grown in rhizoboxes. Overall, delaying N application had a more detrimental effect on plant biomass than delaying P application. The root system increased its root length initially due to N-deficiency, but was quickly thus N-limited that root length was relatively lower than the control group. This study emphasizes the need to dynamically measure roots for a mechanistic understanding of root responses to nutrients.
Because of the many root related measurements in the second experiment, a step-by-step method for measuring root traits under controlled and field conditions was developed and included in this thesis. This method paper describes precisely how root traits of interest can be measured, and helps with deciding which approach should be taken depending on the experimental design. Additionally, we compared the bias and accuracy of several popular root measurement methods. Although methods well correlated with a reference method, most methods tended to underestimate the total root length.
Overall, these results highlight the importance of crop choice in crop rotations and the plasticity of root systems in relation to nutrient application. Our results show high carbon amendments could reduce nitrate leaching after the harvest of crops, especially those with high risk of nitrate leaching, although they had only small impacts on yield. Future research should investigate the applicability in a farm setting, also taking into account financial and practical aspects. Non-AMF precrops could possibly increase yield of the next crop due to a shift to parasitism in agricultural fields, but whether this plays a large role in crop yields should be further investigated for specific soil, crop, and climate conditions. Our results also show the plasticity of root systems in response to nutrients. Understanding and using this plasticity can be useful for improving NUEs by optimizing fertilizer application and selecting root traits that are beneficial for specific environmental conditions.