Refine
To improve the properties of thermochemical heat storage materials, salt mixtures were evaluated for their heat storage capacity and cycle stability as part of the innovation incubator project “Thermochemical battery” of the Leuphana university Lüneburg. Based on naturally occurring compound minerals, 16 sulfates, 18 chlorides and 5 chloride multi-mixtures, 18 bromides and 5 intermixtures between sulfates, chlorides and bromides were synthesized either from liquid solution or by dry mixing for TGA/DSC screening before continuing the heat storage evaluation with five different measurement setups at a laboratory scale. The TGA/DSC analysis served as a screening process to reduce the number of testing materials for the upscaled experiments. The evaluation process consisted of a three-cycle dehydration/hydration measurement at Tmax = 100°C and Tmax = 200°C. In case of the bromide samples a measurement of hydration conditions with Tmax = 110°C and a water flow at e = 18.68mbar, were added to the procedure to detect the maximum water uptake temperature. Also, a single dehydration to a temperature of Tmax = 500°C was implemented to observe melting behavior and to easier calculate the samples’ stages of hydration from the remaining anhydrous mass. Materials which showed high energy storage density and improved cycle stability during this first evaluation were cleared for multi-cycle measurements of 10 to 25 dehydration and hydration cycles at Tmax = 100 to 120°C and the evaluations at m = 20 to 100g scale. An estimate for the specific heat capacities at different temperatures of the materials which passed the initial stage was calculated from the TGA/DSC results as well. The laboratory scale measurement setup went through five stages of refining, which led to reducing the intended maximum sample mass from m = 100g to m = 20g. A switch from supplied liquid water to water vapor as the used reactant was also implemented in exchange for improved dehydration conditions. Introducing a vacuum pump for evaporating the water limited the influence of outside heat sources during hydration and in-situ dehydration was enabled as to not disturb the state the samples were settling in between measurements. Baseline calculation from blanc measurements with glass powder and attempts to calculate the specific heat capacity cp of the tested materials by 6 applying the Joule-Lenz-law to the measurement apparatus was another step of method development. The evaluation process of the laboratory scale tests at the final setting consisted of 1 to 5 cycle measurements of in-situ dehydration and hydrations with applied vacuum for t = 30 minutes at p ~ 30mbar. Upscaling the sample mass to m = 20g allowed for a close observation of different material behaviors. Agglomeration, melting and dissolving of the m = 10mg samples during the TGA/DSC analysis can be deducted from the recorded measurement curves and the state of the sample after measurement. However, at laboratory scale the visible volume changes, observed sample consistency after agglomeration and an automatic removal of molten and dissolved sample mass during the measurement allowed for a better characterization and understanding of the magnitude of the actual changes. This was done for the first time, particularly for mixed salts. Of the original number of 62 samples, 4 mixtures which passed the initial TGA/DSC screening namely {2MgCl2+ KCl}, {2MgCl2+CaCl2}, {5SrBr2+8CaCl2} and {2ZnCl2 + CaCl2} were chosen for further evaluation. The multi-cycle TGA/DSC measurements of {2MgCl2+ KCl}, {2MgCl2+CaCl2} and {5SrBr2+8CaCl2} showed an improved cycle stability for all three materials over the untreated educts. Of the four materials {2ZnCl2 + CaCl2} displayed the strongest deliquescence during hydration in the upscaled experimental setup. {2MgCl2+CaCl2} proved to be the most stable material regarding the heat storage density. The {MgCl2} content of the mixture is likely to partially or completely react to {Mg(OH)Cl} at temperatures of T > 110°C, which however does not impede the heat storage density. {5SrBr2+8CaCl2} displayed a low melting point in hydrated state, causing a fast material loss. This makes it an undesirable storage material. A lower heating rate may still help to avoid an early melting. The {2MgCl2+KCl} mixture was the most temperature stable of the mixtures showing no melting or dissolving behavior. A reaction of the {MgCl2} component of the mixture to {Mg(OH)Cl} was not observed within the applied temperature range of T = 25 to 200°C.