Refine
Keywords
- functional diversity (1) (remove)
Biodiversity loss could jeopardize ecosystem functioning. Yet, the evidences that support this demonstration have been mostly obtained in aquatic and grassland ecosystems. Howbiodiversity affects ecosystem functioning still remain largely unanswered in forests, particularly in subtropical broad-leaved evergreen forests (EBLF). Tree productivity, among a wealth of forest ecosystem functioning, is of particular interest because it reflects the carbon sink capacity and wood productivity. Biodiversity-productivity relationships have been usually investigated at community level. However, tree-tree interactions occur at small scale. Thus, local neighborhood approach may allow a better understanding of tree-tree interactions and their contributions to the effects of biodiversity on tree productivity / growth rates. This thesis aims to analyze the effects of biodiversity and the abiotic environmental factors on the tree growth rates using both local neighborhood and community-based approaches. Furthermore, tree growth rates vary among different tree species. Functional traits have been related to the species-specific growth rates to understand the effects of species identity. Therefore, I also evaluated the crown- and leaf traits to predict the interspecific difference in growth rates. For a better understanding of the mechanisms that underline the relationships of biodiversity and tree growth rates, data of high solution and along time series is required to scrutinize the tree-tree interactions. Thereupon, I evaluated the applicability of terrestrial laser scanning (TLS) in assessing the tree dendrometrics. This thesis was conducted in the Biodiversity Ecosystem Functioning (BEF)–China experiment, which is located in a mountainous subtropical region in southeast China. A total of 40 native broad-leaved tree species were planted. In the first study, I used the local neighborhood approach to analyze how local abiotic conditions (i.e. topographic and edaphic conditions) and local neighborhood (i.e. species diversity and competition by neighborhood) affect the annual growth rates of 6723 individual trees. The second study used the community approach to partition the effects of environmental factors (i.e. topographic and edaphic), functional diversity according to Rao’s quadratic entropy (FDQ) and community weight mean (CWM) of 41 functional traits on community tree growth rates. The main question of the third study was how the species-specific growth rates are related to five crown- and 12 leaf traits.
In the fourth study, I investigated 438 tree individuals for the congruence between the conventional direct field measurements and TLS measurements. It was found that tree growth rates were strongly influenced by the local topographic and edaphic conditions but not affected by the diversity of local neighborhood. In contrast, results obtained by using the community-based approach showed that FDQ and CWMs of various leaf traits rather than abiotic environmental factors had significant impact on the community means of growth rates. Tree-tree interactions already occur in early life stages of trees, which were evidenced by the significant effect of competition by local neighborhood. These findings imply that the effects of abiotic environmental factors may be more evident at local scale and biodiversity effects may vary at different spatial scales. The species-specific growth rates were found to be related to specific leaf traits but not to crown traits and were best explained by both types of traits in combination. This finding supports the niche theory and provides the evidence for using functional diversity to examine the BEF relationships. The TLS-retrieved total tree height, stem diameter at 5 cm above ground, and length and height of the longest branch were highly congruent with those obtained from direct measurements. It indicates that TLS is a promising tool for high resolution, non-destructive analyses of tree structures in young tree plantations. Being one of very few studies to incorporate the individual tree scale in examining the biodiversity-productivity relationships within the BEF researches, this thesis stresses the importance of using individual-tree based approach, functional diversity and TLS to find the evidences of explanatory mechanisms of the observed biodiversity and ecosystem functioning (e.g. tree growth rates) relationships. Biodiversity effects may evolve along the successional stages. Therefore, incorporating the interaction between biodiversity and time in analyzing BEF relationship is also encouraged.