Refine
The geographical situation of Germany considerably affects the final energy consumption of the country. Thermally intensive processes are the largest consumer of energy. In contrary, the level of energy consumed by air conditioning systems and utilized on process cooling is relatively low. Thermal energy storage systems have a high potential for a sustainable energy management, as they provide an efficient integration of thermal energy from renewables and heat recovery processes through spatial and temporal decoupling. Low temperature thermochemical energy stores based on gas-solid reactions represent appealing alternative options to sensible and latent storage technologies, in particular for heating and cooling purposes. They convert heat energy provided from renewable energy and waste heat sources into chemical energy and can effectively contribute to load balancing and CO2 mitigation. Reasonable material intrinsic energy storage density and cooling power are demanded. At present, several obstacles are associated with the implementation in full-scale reactors. Notably, the mass and heat transfer must be optimized. Limitations in the heat transport and diffusions resistances are mainly related to physical stability issues, adsorption/desorption hysteresis and volume expansion and can impact the reversibility of gas-solid reactions. The aim of this thesis was to examine the energy storage and cooling efficiency of CaCl2, MgCl2, and their physical salt mixtures as adsorbents paired with water, ethanol and methanol as adsorbates for utilization in a closed, low level energy store. Two-component composite adsorbents were engineered using a representative set of different host matrices (activated carbon, binderless zeolite NaX, expanded natural graphite, expanded vermiculite, natural clinoptiolite, and silica gel). The energetic characteristics and sorption behavior of the parent salts and modified thermochemical materials were analyzed employing TGA/DSC, TG-MS, Raman spectroscopy, and XRD. Successive discharging/charging cycles were conducted to determine the cycle stability of the storage materials. The overall performance was strongly dependent on the material combination. Increase in the partial pressure of the adsorbate accelerated the overall adsorbate uptake. From energetic perspectives the CaCl2-H2O system exhibited higher energy storage densities than the CaCl2 and MgCl2 alcoholates studied. The latter were prone to irreversible decomposition. Ethyl chloride formation was observed for MgCl2 at room and elevated temperatures. TG-MS measurements confirmed the evolution of alkyl chloride from MgCl2 ethanolates and methanolates upon heating. However, CaCl2 and its ethanolates and methanolates proved reversible and cyclable in the temperature range between 25 °C and 500 °C. All composite adsorbents achieved intermediate energy storage densities between the salt and the matrix. The use of carbonaceous matrices had a heat and mass transfer promoting effect on the reaction system CaCl2-H2O. Expanded graphite affected only moderately the adsorption/desorption of methanol onto CaCl2. CaCl2 dispersed inside zeolite 13X showed excellent adsorption kinetics towards ethanol. However, main drawback of the molecular sieve used as supporting structure was the apparent high charging temperature. Despite variations in the reactivity over thermal cycling caused by structural deterioration, composite adsorbents based on CaCl2 have a good potential as thermochemical energy storage materials for heating and cooling applications. Further research is required so that the storage media tested can meet all necessary technical requirements.