Refine
Year of publication
Document Type
- Doctoral Thesis (25)
- Bachelor Thesis (1)
- Habilitation (1)
Keywords
- Ökosystem (3)
- Artenreichtum (2)
- Biodiversität (2)
- Heide (2)
- Sediment (2)
- calluna vulgaris (2)
- social-ecological systems (2)
- 15N tracer experiment (1)
- Abandonment (1)
- Agrarsystem (1)
- Artenvielfalt (1)
- Aue (1)
- BEF-China (1)
- Baum (1)
- Bestäuber (1)
- Biodiversity (1)
- Boden-Pflanze-System (1)
- Brache (1)
- Bürger (1)
- Calamagrostis epigejos (1)
- China (1)
- Citizen Science (1)
- Deutschland (1)
- Diasporenbank (1)
- Eiderstedt (1)
- Elbe (1)
- Fragmentierung (1)
- Führung (1)
- Germany (1)
- Grundschule (1)
- Grundschulkinder (1)
- Heidemahd (1)
- Hochwasser (1)
- Insekten (1)
- Jordan (1)
- Keimfähigkeit (1)
- Konkurrenz <Biologie> (1)
- Käfer (1)
- Landschaft (1)
- Landschaftsbiogeographie (1)
- Landschaftsschutz (1)
- Landschaftsökologie (1)
- Landwirtschaft (1)
- Lebensmittelkontrolle (1)
- Lebensmittelsicherheit (1)
- Lebensraum (1)
- Meliponini (1)
- Mensch-Raubtier-Konflikte (1)
- Multi-Level-Verwaltung (1)
- Nachbarschaft (1)
- Nordseeküste (1)
- Nährstoffmangel (1)
- Obere Jordantal (1)
- Palynologie (1)
- Paläoklima (1)
- Pflanzen (1)
- Pleistozän (1)
- Primary school children (1)
- Priority Effects (1)
- Quartär (1)
- Quartät (1)
- Quaternary (1)
- Renaturierung <Ökologie> (1)
- Rückgang (1)
- Samen (1)
- Samenfraß (1)
- Schadstoffeintrag (1)
- Soziales System (1)
- Stachellose Biene (1)
- Stickstoffbelastung (1)
- Systematik (1)
- Test (1)
- Testing paradigms (1)
- Tierwelt (1)
- Trauermücken (1)
- Umweltbildung (1)
- Umwelterziehung (1)
- Upper Jordan Valley (1)
- Vegetationsstruktur (1)
- Verstädterung (1)
- Verwaltung (1)
- Vorrang (1)
- Vögel (1)
- Vögel in Agrarlandschaften (1)
- Waldboden (1)
- Waldweide (1)
- calamagrostis epigejos (1)
- citizen science (1)
- collaborative governance (1)
- conservation biology (1)
- countryside biogeography (1)
- disturbance (1)
- ecosystem (1)
- environmental education (1)
- farmland birds (1)
- fauna (1)
- flood (1)
- food security (1)
- function seed predation (1)
- functional diversity (1)
- funktionale Diversität (1)
- germination ability (1)
- governance (1)
- grassland (1)
- ground beetle (1)
- habitat fragmentation (1)
- heathland ecosystems (1)
- herbivore consumer fitness (1)
- human-carnivore conflicts (1)
- landscape ecology (1)
- local neighborhood (1)
- lokale Nachbarschaft (1)
- multi-level governance (1)
- multi-proxy Paläoumwelt (1)
- multi-prozy palaeoenvironment (1)
- nitrogen deposition (1)
- numerical dating (1)
- numerische Datierung (1)
- nutrient limitation (1)
- nutritional ecology (1)
- palaeoclimate (1)
- palaiarctic fickle Midge (1)
- palynology (1)
- plant-insect interactions (1)
- plant-plant interaction (1)
- pollution (1)
- sediment (1)
- semi-open habitats (1)
- sozial-ökologische Systeme (1)
- species diversity (1)
- terrestrial laser scanning (1)
- terrestrisches Laserscanning (1)
- trees (1)
- urbanization (1)
- vegetation structure (1)
- wood-pastures (1)
- Äthiopien (1)
- Ökosystemfunktion (1)
Institute
- Institut für Ökologie (IE) (27) (remove)
Assessment of forest functionality and the effectiveness of forest management and certification
(2021)
Forest ecosystems are complex systems that develop inherent structures and processes relevant for their functioning and the provisioning of ecosystem services that contribute to human wellbeing. So far, forest management focused on timber production while other services were less rewarded. With increasing climate change impacts, especially regulating ecosystem services such as microclimate regulation are ever more relevant to maintain forest functions and services. A key question is how forest management supports or undermines the ecosystems’ capacity to maintain those functions and services. Forest management implies silvicultural interventions such as thinning and timber harvesting and ranges from single tree extraction to large clearcuts as well as forest reserves without active forest operations and shape the character of forest ecosystems (e.g. natural versus planted forests). Artificial plantings, monocultures and management for economic timber production simplify forest structures and impair ecosystem resilience, resistance and the existence of forests but also the services essential for the prosperity and health of humanity. Efforts to reduce the negative impacts and attempts to safeguard forest functions are manifold and include compulsory national and international guidelines and regulations for forest management, conventions, but also voluntary mechanisms such as certification systems.
The main objective of this thesis was the development of a concept to assess the functionality of forests and to evaluate the effectiveness of forest ecosystem management including certification. An ecosystem-based and participatory methodology, named ECOSEFFECT, was developed. The method comprises a theoretical and an empirical plausibility analysis. It was applied to the Russian National FSC Standard in the Arkhangelsk Region of the Russian Federation – where boreal forests are exploited to meet Europe's demand for timber. In addition, the influence of forestry interventions on temperature regulation in Scots pine and European beech forests in Germany was assessed during two extreme hot and dry years in 2018 and 2019.
Microclimate regulation is a suitable proxy for forest functionality and can be applied easily to evaluate the effectiveness of forest management in safeguarding regulating forest functions relevant under climate change. Microclimate represents the most decisive factor differentiating clearcuts and primary forests. Thus, the assessment of forest microclimate regulation serves as convenient tool to illustrate forest functionality. In the boreal and temperate forests studied in the frame of this thesis, timber harvesting reduced the capacity to self-regulate forests’ microclimate and thus impair a crucial part of ecosystem functionality. Changes in structural forest characteristics influenced by forest management and silviculture significantly affect microclimatic conditions and therefore forest ecosystems’ vulnerability to climate change. Canopy coverage and the number of cut trees were most relevant for cooling maximum summer temperature in pine and beech forests in northern Germany. Maximum temperature measured at ground level increased by 0.21 – 0.34 K when 100 trees were cut. Opening the forest canopy by 10 % caused an increase of maximum temperature at ground-level by 0.53 K (including pine and beech stands). Relative temperature cooling capacity decreased with increasing wood harvest activities and dropped below average values when more than 656 trees per hectare (in 2018; and 867 trees in 2019) were felled. In pine stands with a canopy cover below 82 % the relative temperature buffering capacity was lower than the average. Mean maximum temperature measured at ground-level and in 1.3 m was highest in a pine-dominated sample plots with relatively low stand volume (177 m3 ha-1) and 9 K lower in a sample plot with relatively high stock volumes of F. sylvatica (> 565 m3 ha-1). During the hottest day in 2019, the difference in temperature peaks was more than 13 K for pine-dominated sample plots with relatively dense (72 %) and low (46 %) canopy cover.
The Russian FSC standard has the potential to improve forest management and ecological outcomes, but there are shortcomings in the precision of targeting actual problems and ecological commitment. In theory, FSC would transform forest management practices and induce positive changes and effective outcomes by addressing 75 % of the identified contributing factors including highly relevant factors and threats including large-scale (temporary) tree cover loss, which contributes to reducing about half of the identified stresses in the ecosystem. It is theoretically plausible that FSC prevents logging in high conservation value forests and intact forest landscapes, reduces the size and number of clearcuts, and prevents hydrological changes in the landscape. However, the standard was not sufficiently explicit and compulsory to generate a strong and positive influence on the identified problems and their drivers. Moreover, spatial data revealed, that the typical regular clearcut patterns of conventional timber harvesting continue to progress into the FSC-certified boreal forests, also if declared as ‘Intact Forest Landscape’. This results in the need to verify the assumptions and postulates on the ground as it remains unclear and questionable if functions and services of boreal forests are maintained when FSC-certified clearcutting continues. On the clearcuts, maximum temperature exceeded 36 °C and stayed below 30 °C in the closed primary forest. The number of days with temperatures above 25 °C at least doubled on clearcuts. Temperature cooling capacity was reduced by up to 14 % and temperature buffering capacity up to 60 %. The main reason why FSC-certified clearcuts do not differ from conventional clearcuts is that about 97 % of trees within equally large clearcut sites of up to 50 ha were removed. The spatial design of clearcuts, their size and the intensity of clearing as well as the density of skidding trails for timber extraction was not positively influenced by FSC-certification. Annual tree cover loss was lowest in non-certified areas. This means, that FSC may even contribute to an increased biomass removal within the clearcuts, which compromises the ecosystems’ capacity to recover and maintain ecological functions and services. The analysis of satellite-based data on tree cover loss showed that clearcutting causes secondary dieback in the surrounding of the cleared area. FSC-certification does not prevent the various negative impacts of clearcutting and thus fails to safeguard ecosystem functions. The postulated success in reducing identified environmental threats and stresses, e. g. through a smaller size of clearcuts, could not be verified on site. The empirical assessment does not support the hypothesis of effective improvements in the ecosystem. In practice, FSC-certification did not contribute to change clearcutting practices sufficiently to effectively improve the ecological performance. Sustainability standards that are unable to translate principles into effective outcomes fail in meeting the intended objectives of safeguarding ecosystem functioning. Clearcuts that carry sustainability labels are ecologically problematic and ineffective for the intended purpose of ecological sustainability.
The overexploitation of provisioning services, i.e. timber extraction, diminishes the ecosystems’ capacity to maintain other services of global significance. It also impairs ecosystem functions relevant to cope with and adapt to other stresses and disturbances that are rapidly increasing under climate change.
Forest management under climate change needs to apply precautionary principles and reduce further ecological risks such as secondary dieback and deterioration of regulating services that are relevant for the functioning of forests. Forest managers have to avoid ecological disimprovements by applying strict ecological principles with effective outcomes in order to maintain functional forests that regulate their own microclimate also as a basis for sustainable economic benefits.
Through the expansion of human activities, humanity has evolved to become a driving force of global environmental change and influences a substantial and growing part of natural ecosystem trophic interactions and energy flows. However, by constructing and building its own niche, human distance from nature increased remarkably during the last decades due to processes of globalization and urbanization. This increasing disconnect has both material and immaterial consequences for how humans interact and connect with nature. Indeed, many regions across the world have disconnected themselves from the productivity of their regional environment by: (1) accessing biological products from distant places through international trade, and (2) using non-renewable resources from outside the biosphere to boost the productivity of their natural environment. Both mechanisms allow for greater resource use then would be possible otherwise, but also involve complex sustainability challenges and lead to fundamentally different feedbacks between humans and the environment. This dissertation empirically investigates the sustainability of biophysical human-nature connections and disconnections from a social-ecological systems perspective. The results provide new insights and concrete knowledge about biophysical human-nature disconnections and its sustainability implications, including pervasive issues of injustice. Through international trade and reliance on non-renewables, particularly higher-income regions appropriate an unproportional large share of global resources. Moreover, by enabling seemingly unconstrained consumption of resources and simultaneous conservation of regional ecosystems, increasing regional disconnectedness stimulates the misconception of decoupling. Whereas, in fact, the biophysically most disconnected regions exhibit the highest resource footprints and are, therefore, responsible for the largest environmental damages. The increasing biophysical disconnect between humans and nature effectively works to circumvent limitations and self-constraining feedbacks of natural cycles. The circumvention of environmental constraints is a crucial feature of niche construction. Human niche construction refers to the process of modifying natural environments to make them more useful for society. To ease integration of the chapters in this thesis, the framework paper uses human niche construction theory to understand the mechanisms and drivers behind increasing biophysical disconnections. The theory is employed to explain causal relationships and unsustainable trajectories from a holistic perspective. Moreover, as a process-oriented approach, it allows connecting the empirically assessed states of disconnectedness with insights about interventions and change for sustainability. For a sustainability transformation already entered paths of disconnectedness must be reversed to enable a genuine reconnection of human activities to the biosphere and its natural cycles. This thesis highlights the unsustainability of disconnectedness and opens up debate about how knowledge around sustainable human niche construction can be leveraged for a reconnection of humans to nature.
Traditional farming landscapes typically support exceptional biodiversity. They evolved as tightly coupled social-ecological systems, in which traditional human land-use shaped highly heterogeneous landscapes. However, these landscapes are under severe threats of land-use change which potentially pose direct threats to biodiversity, in particular through land-use intensification and land abandonment. Navigating biodiversity conservation in such changing landscapes requires a thorough understanding of the drivers that maintain the social-ecological system. This dissertation aimed to identify system properties that facilitate biodiversity conservation in traditional farming landscape, focusing specifically on birds and large carnivores in the rapidly changing traditional farmland region of Southern Transylvania, Romania. In order to identify these properties, I first examined the effects of local and landscape scale land-use patterns on birds and large carnivores and how they may be affected by future land-use change (Chapters II-V). Second, to gauge the role of particular traditional land-use elements for biodiversity I focused on the conservation value of traditional wood pastures (Chapters VI-VIII). Third, I took a social-ecological systems approach to understand how links between the social and ecological parts of the system affect human-bear coexistence (Chapters IV and IX). Bird diversity was supported by the broad gradients of woody vegetation cover and compositional heterogeneity. Land-use intensification, and hence the loss of woody vegetation cover and homogenization of land covers, would thus negatively affect biodiversity. This was especially evident from predictions on the distribution of the corncrake (Crex crex) in response to potential future land cover homogenization. Here, a moderate reduction of land cover diversity could drastically reduce the extent of corncrake habitat. Further results showed that the brown bear (Ursus arctos) would mainly be affected by land-use change through the fragmentation of large forest blocks, especially if land-use change would reduce habitat connectivity to the presumed source population in the Carpathian Mountains. Moreover, this dissertation revealed that large carnivores (brown bear and wolf, Canis lupus) may have important and often ignored roles in structuring the ecosystem of traditional farming landscapes by limiting herbivores. Wood pastures were found to have a high conservation value. The combination of low-intensity used grasslands with old scattered trees provided important supplementary habitat for different forest species such as woodpeckers and the brown bear. Worryingly, current management of wood pastures differed from traditional techniques in several aspects, which may threaten their persistence in the landscape. The majority of people had a positive perception on human-bear coexistence. The use of traditional sheep herding techniques combined with the tolerance of some shepherds to occasional livestock predation facilitated coexistence in a region where both carnivores and livestock are present. More generally, the genuine links between people and their environment were important drivers of people´s positive views on coexistence. However, perceived failures of top-down managing institutions could potentially erode these links and reduce people´s tolerance towards bears. Through the consideration of two different animal taxa, this dissertation revealed six important system properties facilitating biodiversity conservation in traditional farming landscapes. Similar proportions of the main land-use types (arable land, grassland, and forests) support species richness at the regional scale possible through habitat connectivity and continuous spill-over between land-use types. Heterogeneous landscapes can further support biodiversity through complementation and supplementation of habitat at the landscape scale. Gradients of woody vegetation cover and heterogeneity, supported biodiversity at both local and landscape scales possibly through the provision of a wide range of resources. The heterogeneous character of the landscape is tightly linked to traditional land-use practices, which also maintain specific traditional land-use elements and facilitate human-carnivore coexistence. Top-down limitation of large carnivores on herbivores possibly enhances vegetation growth and tree regeneration. The genuine links between humans and nature support human-bear coexistence, and these links may form the core of people´s values and sustainable use of natural resources.
Social insects like honeybees (Apis mellifera) and stingless bees (Apidae: Meliponini) face a relatively high risk to be attacked by pests and pathogens. To decrease the risk of infection, in addition to an innate immune system, these species have evolved various cooperative defense mechanisms such as hygienic behavior or allo-grooming, which contribute to the overall health of the colonies and are therefore also referred to as social immunity. The collection and use of plant resin is another important strategy of social immunity. Resin is a sticky, often aromatic substance with antimicrobial and deterrent properties secreted by plants for protection of the vegetative tissue. Honeybees and stingless bees take advantage of these properties by using resins for nest construction (often mixtures of resin and wax called “propolis” or “cerumen”) and as defense against pests and pathogens. Plant resins, thus, play a crucial role for the ecology of these species and are an important resource for them. Nevertheless, how bees exploit available resin sources and if resin collection can protect colonies from diseases received comparatively little attention in the past. Therefore the aim of this thesis is to provide new insights into the plant origin and significance as well as the influence of resin resource diversity on bee colony health. Resource use and availability form fundamental prerequisites, having decisive influence on the viability of individuals and maintenance of populations. Information on the resources required by a species is thus important to effectively promote and preserve it. For honeybees (A. mellifera) in temperate regions, precise information about which resin sources they use is largely lacking. By chemical comparing bee-collected resins and tree resins, I traced back the resin sources used by individual bees. Results show that honeybees collect distinct resin types that are related to different tree species (several poplar species: Populus balsamifera, P. xcanadensis; Betula alba; Aesculus hippocastanum; several poplar species). With this study I provided the first evidence, that A. mellifera in temperate regions use a variety of different tree species as resin sources and, moreover, show preferences for specific resin sources. Maintenance of colony health is probably one of the major purposes of resin collection. Nevertheless, studies investigating the benefits of resins at the colony level are rare and there are only few evidences on the effects of raw propolis (unlike commonly used ethanol extracts) on colony health. For this reason, I conducted an experimental field study in which I investigated whether propolis, as it is naturally deposited in the nests, can protect honeybee colonies against some of the most important pathogens (Varroa destructor mite, Deformed Wing Virus). The results of this study showed that propolis in (semi-) natural conditions can increase the disease resistance of honeybee colonies, underscoring the importance of resins for honeybee health. Resin collection by stingless bees is comparatively well studied and it is known that these species commonly forage on a variety of different plant species. To increase knowledge on whether and how bees may profit from a diversity of resin resources, I tested how the protective function of a resin varied among different sources (and their mixtures) and various potential aggressors (predators, parasites and pathogens). The results of this study revealed that resins from different trees vary in their effectivity against different target organisms. Moreover, resin blends were more effective than some of the individual resins, suggesting that bees can benefit from a variety of resin resources. In summary, honeybees in temperate regions, similar to tropical stingless bees, use a variety of different tree species as resin sources. Because resins from different tree species varied in their protective function, this indicates that bees can profit from a variety of different resins/resin sources by improving the defense against diverse pests and pathogens. Conversely, the lack of resin had a negative impact on the disease resistance of colonies. Consequently, availability as well as the variety of suitable resin sources is of great importance for the health of bees. In addition to nectar and pollen, resin, as a further important resource, should therefore find more attention in beekeeping. Resin collection as the natural disease defense of bees should find more respect in beekeeping praxis and should be more strongly included in future consideration on how to promote bee colony health.
Climate change and atmospheric deposition of nitrogen affect biodiversity patterns and functions of forest ecosystems worldwide. Many studies have quantified tree growth responses to single global change drivers, but less is known about the interaction effects of these drivers at the plant and ecosystem level. In the present study, we conducted a full-factorial greenhouse experiment to analyse single and combined effects of nitrogen fertilization (N treatment) and drought (D treatment) on 16 morphological and chemical response variables (including tissue δ13C signatures) of one-year-old Fagus sylvatica seedlings originating from eight different seed families from the Cantabrian Mountains (NW Spain). Drought exerted the strongest effect on response variables, reflected by decreasing biomass production and increasing tissue δ13C signatures. However, D and N treatments interacted for some of the response variables, indicating that N fertilization has the potential to strengthen the negative effects of drought (with both antagonistic and amplifying interactions). For example, combined effects of N and D treatments caused a sevenfold increase of necrotic leaf biomass. We hypothesize that increasing drought sensitivity was mainly attributable to a significant reduction of the root biomass in combined N and D treatments, limiting the plants’ capability to satisfy their water demands. Significant seed family effects and interactions of seed family with N and D treatments across response variables suggest a high within-population genetic variability. In conclusion, our findings indicated a high drought sensitivity of Cantabrian beech populations, but also interaction effects of N and D on growth responses of beech seedlings.
"Sustainable development: enough for everyone, forever" is the definition of sustainability. Sustainable landscape development is the main goal of decision makers worldwide. Achieving this goal in the long term leads to achieving social, economic and environmental sustainability. Remote sensing has been playing an essential role in monitoring remote areas. This study has employed part of the role of remote sensing in supporting the direction of decision makers towards sustainable landscape development. The study has focused on some of the main elements affecting sustainable environment as stated in Agenda 21. These elements are land uses, specifically agricultural land uses, water quality, forests, and water hazards such as floods.
Three research programs were undertaken to investigate the role of Terrasar-x imagery, as a source of remote sensing data, in monitoring the environment and achieving the previous stated elements. The investigation was intended to investigate the effectiveness of TSX imagery in identifying the cropping pattern of selected study areas by employing a pixel-based supervised maximum likelihood classifier, as published in Paper I, assessment of the efficiency of using TSX imagery in determining land use and the flood risk maps by applying an object-based decision tree classifier as published in Paper II, and determination of the potential of inferential statistics tests such as the two samples Z-test and multivariate analysis, for example Factor Analysis, for identifying the kind of forest canopy, based on the backscattering coefficient of TSX imagery of forest plots, as presented in Paper III. Papers I and II covered two pilot areas in the Lower Saxonian Elbe Valley Biosphere Reserve “das Biosphärenreservat „Niedersächsische Elbtalaue„ around Walmsburger Werder between Elbe-Kilometer 533 - 543 and Wehninger Werder between Elbe-Kilometer 505 - 520. Paper III focused on the Fuhrberger Feld water protection area near Hanover in Germany. The inputs for this research were mainly SAR Imagery and the ground truth data collected from field surveys, in addition to databases, geo-databases and maps.
The study presented in Paper I used two filters to decrease speckle noise namely De-Grandi as multi-temporal speckle filter, and Lee as an adaptive filter. A multi-temporal classification method was used to identify the different crops using a pixel-based maximum likelihood classifier. The classification accuracy was assessed based on the external user accuracy for each crop, the external producer accuracy for each crop, the Kappa index and the external total accuracy for the entire classification. Three cropping pattern maps were produced namely the cropping pattern map of Wehninger Werder in 2011 and the cropping pattern maps of Walmsburger Werder in 2010 and in 2011. The study showed that image filtering was essential for enhancing the accuracy of crop classification. The multi-temporal filter De-Grandi enhanced the producer accuracy by about 10% compared to the Lee filter. Furthermore, gathering and utilizing large ground truth data greatly enhanced the accuracy of the classification. The research verified that using sequence images covering the growing season usually improved the classification results. The results exposed the effect of the polarization, where using VV-polarized data enabled on average 5% higher classification accuracy than the HH-polarized data, however using dual polarized data enhanced the classification accuracy by 3%. The study demonstrated that the majority of the classifications produced according to the crop calendar had higher total producer accuracy than using all acquisitions.
The study demonstrated undertaken in Paper II applied the decision tree object-based classifier in determining the major land uses and the inundation extent areas in 2011 and 2013 using the Lee-filtered imagery. Based on the maps produced for the land uses and inundation areas, the hazard areas due to the floods in 2011 and 2013 were identified. The study illustrated that 95% of the inundated area was classified correctly, that 90% of vegetated lands were accurately determined, and around 80% of the forest and the residential areas were correctly recognized. The study demonstrated that the residential areas did not experience any hazards in both pilot areas, however some cultivated lands were fully or partially submerged in 2011. These fields are in the high flood zone and therefore are expected to be entirely submerged during future high floods. Although, these fields were flooded in January 2011, they were cultivated with maize and potatoes in summer 2011 and in subsequent years and consequently were inundated in June 2013 with high economic losses to the owners of these fields.
The research undertaken in Paper III statistically analyzed the backscattering coefficient of the Lee-filtered TSX in some forest plots by the Factor Analysis and two sample Z-test. The study showed that Factor analysis tools succeeded in differentiating between the coniferous forest and the deciduous forest and mixed forest, but failed to discriminate between the deciduous and the mixed forest. On one hand, only one factor was extracted for each sample plot of the coniferous forest with approximately equal loadings during the whole acquisition period from March 2008 to January 2009. On the other hand, two factors were extracted for each deciduous or mixed forest sample plot, where one factor had high loadings during the leaf-on period from May to October, and the other one had high loadings during the leaf-off period from November to April. Furthermore, the research revealed that the two sample Z-test enabled not only differentiation between the deciduous and the mixed forest against the coniferous forest, but also discrimination between deciduous forest and the mixed forest. Statistically significant differences were observed between the mean backscatter values of the HH-polarized acquisitions for the deciduous forest and the mixed forest during the leaf-off period, but no statistically significant difference was found during the leaf-on period. Moreover, plot samples for the deciduous forest had slightly higher mean backscattering coefficients than those for the mixed forest during the leaf-off period.
Global environmental changes and the subsequent biodiversity loss has raised concerns over the consequences for the functioning of ecosystems and human well-being. This thesis provides new mechanistic insights into the role of tree diversity in regulating forest productivity and forests’ responses to climate change. The thesis also addresses the overlooked functional role of ecological continuity in mediating ecosystem processes in the context of multiple global environmental changes. The findings of the thesis emphasize the need to retain the functional integrity of forest ecosystem by preserving biodiversity and acknowledging the ecological memory forests.
The dissertation deals with the impact of nitrogen deposition on the functioning of heathland ecosystems. Special interests were the displacement of heather (Calluna vulgaris) by the purple moor-grass (Molinia caerulea) as well as the fate of nitrogen loads in dry heathland ecosystems. The results of the studies undertaken in the field and in the greenhouse are presented as five individual journal articles. The nature of nutrient limitation was studied by means of fertilisation experiments with nitrogen (N) and phosphorus for heather and purple moor-grass (Articles I and II). The impact of nitrogen deposition on the outcome of competition between these two species was analysed during a competition experiment in the greenhouse (Article III). The aim of a 15N tracer experiment was to determine the fate of nitrogen deposition as well as allocation patterns (Article IV). In addition, the response of purple moor-grass to the combined effects of nitrogen deposition and summer droughts was investigated in a second greenhouse experiment (Article V). The fertilisation experiments showed that the growth of heather as well as of purple moor-grass is predominantly limited by N (Articles I and II). However, the results of the competition experiment demonstrated that only purple moor-grass has the ability to benefit from additional N loads, which in turn gives the grass the opportunity to displace heather (Article III). Drought treatment resulted in strikingly reduced biomass production of purple moor-grass in N-fertilised pots, mainly as a result of dying aboveground biomass during dry periods (Article V). This striking susceptibility of purple moor-grass to the combination of nitrogen deposition and drought must be taken into account, when predicting future developments of dry heathlands. The results of the 15N tracer experiment showed that the investigated heath is still in an early stage of N saturation, as indicated by a high immobilisation capacity and negligible leaching losses of 15N (Article IV). The findings of the dissertation contribute to a better understanding of the processes underlying the encroachment of purple moor-grass in dry heathlands and can enhance heathland management. The results can also be used to to evaluate the current and future status of this ecosystem particularly with regard to the various stages of N saturation as well as in the determination of “Critical Loads”.
Die Kulturlandschaft im Alpenraum war in den letzte Jahrzehnten einem besonders starken Strukturwandel ausgesetzt. Als Region mit einem hohen Anteil an Grenzertragsstandorten lassen sich hier zwei gegenläufige Entwicklungen feststellen: zum einen findet eine Intensivierung der Landnutzung in Bereichen mit guter Zugänglichkeit und maschineller Nutzbarkeit statt, zum anderen kommt es häufig zu einem Rückgang der Nutzungsintensität oder Nutzungsaufgabe in Bereichen, in denen die landwirtschaftliche Bearbeitung schwierig ist. Die Auswirkungen auf die Biodiversität werden bei beiden Entwicklungen kritisch gesehen, allerdings mangelt es an detaillierten Untersuchungen.
Im Rahmen eines sechsjährigen Forschungsvorhabens wurden auf einer Weidefläche in den Allgäuer Alpen Laufkäfer, Spinnen und Vegetation untersucht. Auf der Fläche fand zu Beginn der Untersuchung eine Nutzungsänderung statt: ein großer Teil der vormals intensiv von Schafen beweideten Fläche wurde auf extensive Rinderbeweidung umgestellt, kleine Teilflächen wurden aus der Nutzung genommen.
Der Fokus dieser Dissertation liegt in den Untersuchungen der Laufkäfer. Hier wurde zunächst ein Erfassungsschema für Laufkäfer in schwer erreichbaren Gebieten der Alpen erarbeitet, um intensive und mehrjährige Untersuchungen logistisch durchführen zu können. Dabei wurden die Ergebnisse der Laufkäfererfassung über die gesamte Vegetationsperiode mit den Ergebnissen einer reduzierten Erhebung verglichen. Es konnte gezeigt werden, dass eine Beprobung über jeweils zwei Wochen Anfang Juni und Anfang Juli den gesamten Datensatz hinreichend repräsentiert.
Des weiteren wurde untersucht, ob die Vegetation als Surrogat für die beiden untersuchten Arthropodengruppen (Spinnentiere und Laufkäfer) dienen kann, d.h. die Ergebnisse der Vegetation auf die anderen Artengruppen übertragbar ist. Dies wurde sowohl auf Ebene der Artzusammensetzung als auch des Artenreichtums für die drei Taxa geprüft. Zudem wurde überprüft, ob die unter vegetationskundlichen Aspekten abgegrenzten geschützten Lebensraumtypen auch besonders wertvolle Habitate für die Arthropodengruppen darstellen. Die Ergebnisse der Untersuchung zeigen, dass eine ausreichende Kongruenz nicht gegeben und damit die Übertragbarkeit von Ergebnissen bei der Vegetation auf die untersuchten Arthropodengruppen in den Gebirgslebensräumen nicht gewährleistet ist. Dies hat eine hohe praktische Relevanz, da im Rahmen von Managementplanungen für die FFH-Richtlinie als auch bei der Bayerischen Alpenbiotopkartierung überwiegend ein starker Fokus auf vegetationskundlichen Aspekten liegt und insbesondere artenreiche Arthropodengruppen meist nicht betrachtet werden.
Abschließend wurde mittels gemischter Modelle (mixed effects models) untersucht, welche Veränderungen bei den Laufkäfern nach der Nutzungsänderung im Untersuchugnsgebiet auftraten. Sämtliche errechneten Modelle zeigten Veränderungen der abhängigen Variablen über die Zeit: nach Aufgabe der intensiven Schafbeweidung nahmen die Arten- und Individuenzahlen sowie die Biomasse an Laufkäfern zu. Die Tiere wurden durchschnittlich größer und es traten mehr herbivore Laufkäfer auf. Auch konnten unterschiedliche Entwicklungen zwischen den Standorten beobachtet werden. Die beobachteten Veränderungen werden im Artikel detailliert diskutiert. Die meisten Veränderungen, insbesondere die Zunahme der Artenzahlen sowie der durchschnittlichen Körpergröße, deuten auf eine Erholung der Laufkäferfauna von der intensiven Schafbeweidung hin. Die Nutzungsumstellung und die aktuell praktizierte extensive Rinderbeweidung werden im Gebiet naturschutzfachlich positiv bewertet. Die Arbeit liefert eine gute Vorlage und fundierte Begründung, gerade auch im Alpenraum verstärkt Laufkäfer bei der Beantwortung naturschutzfachlicher Fragestellungen einzubinden.
Restoration and management of abandoned, dry continental heathland and sandy grassland communities
(2018)
Land-use changes and long-term abandonment are main drivers that change ecosystem functioning and cause biodiversity loss of many semi-natural habitats, such as heathlands and grasslands. Traditional management measures such as low-intensity grazing created these semi-open landscapes and maintained a high species richness. However, from the middle of the 19th century onwards, traditional management practices began to decline due to socio-economic changes, and large areas of heathlands and grasslands were subjected to succession and reverted to woodland. Nowadays, dry heathlands as well as dry sandy grasslands are recognized as being of high conservation value and classified as ´habitats of community interest´ (´European dry heaths´, habitat code 4030; ´Xeric sand calcareous grasslands´, habitat code *6120). Whereas heathlands in the Atlantic biogeographical region have been in the centre of interest, dry heathland communities in the Continental biogeographical region have been widely neglected, even though they comprise 30 percent of all dry heaths as well as 89 percent of all dry sandy grasslands, respectively, in Europe. Thereby, the conservation status of both habitat types is listed as unfavourable-bad across the Continental biogeographical region. Surprisingly, no detailed studies are available on cost-efficient and sustainable restoration and management schemes to successfully restore and maintain highly degraded, long-abandoned Continental heaths and sandy grasslands, and thus, to counteract the poor conservation status of the habitat types. This shows the great need for research for the Continental biogeographical region (chapter I). Thus, the present thesis provides substantial knowledge about the population dynamics of the key plant species of dry heaths Calluna vulgaris (L.) HULL (henceforth referred to as Calluna) by investigating key processes in the biology of the species as well as about the restoration and management of long-abandoned, dry Continental heathland and sandy grassland communities. In order to better understand the process of successful Continental heathland restoration, I analysed the reproductive potential (seed production, soil seed bank, and germination ability of seeds) of degenerate Calluna stands as well as the effects of single and combined management options on the generative rejuvenation (i.e., recruitment and survival) of Calluna (chapter II). The results are based on a comprehensive three-year field experiment including the management options year-round, low-intensity cattle and horse grazing, one-time mowing and one-time shallow soil disturbances combined with greenhouse investigations on the soil seed bank content and germination ability of Calluna seeds. The results showed that even after long-term abandonment, seed production of degenerate Calluna stands and the germination ability of seeds proved to be high, being similar to Atlantic heathlands, whereas the soil seed bank is considerably reduced probably due to the dry conditions in the Continental region. In addition, low-intensity grazing with free-ranging robust breeds and the combination with one-time mowing at the beginning of the restoration process is an effective means of supporting the generative rejuvenation of this key plant species in degraded Continental heaths. The second study of this thesis (chapter III) focussed on the first-year establishment of Calluna in managed and unmanaged dry heaths and heaths in mosaics with dry sandy grasslands. The germination ability of seeds of different life-history phases of Calluna was analysed to determine if the predominance of the late life-history phase restricts the rejuvenation process of this key plant species. In addition, beside effects of management measures (year-round, low-intensity grazing, one-time mowing, one-time shallow soil disturbances) I analysed the most important safe site conditions that possibly influenced the germination and the first-year survival of Calluna. The results of the study combine field experiments with growth chamber investigations. I found that life-history phase of Calluna did not significantly affect seed germination and thus, the predominance of the degenerate life-history phase does not restrict the rejuvenation process. In addition, the results of my study revealed that grazing and thus trampling intensity must be temporarily and locally enhanced at the beginning of the restoration process of highly degraded heaths to increase safe site availability for successful Calluna establishment. Thereby, shadowing is the most important safe site condition that limit Calluna recruitment and survival in the first year in both degraded heaths as well as in mosaics with sandy grasslands, since seedlings receiving full sunlight die significantly more frequently than slightly or fully shaded seedlings. In the third study (chapter IV), I investigated the impacts of year-round low-intensity cattle and horse grazing on the development of the highly competitive grass Calamagrostis epigejos (henceforth referred to as Calamagrostis), as well as the vegetation structure and plant species richness of long-abandoned but nutrient-poor dry heathland and sandy grassland communities, their mosaics and Calamagrostis stands. Finally, I assessed the local conservation status of the habitat types after seven years of grazing in comparison to long-abandoned sites. The results are based on a comprehensive field study on two spatial scales (plot-level: 25 square meters, macroplot-level: 1 ha). I found that grazing successfully reduced the coverage and prevented the further spread of Calamagrostis, while simultaneously maintained or improved characteristic species richness and vegetation structure across the different nutrient-poor vegetation types over time, and thus enhanced the local conservation status of habitat types of community interest. In conclusion, the results of my studies considerably improved the understanding of dry, Continental heathland and sandy grassland restoration and management. They provide evidence that even after long-term management abandonment, year-round low-intensity cattle and horse grazing is a suitable management tool for restoring, maintaining and even improving nutrient-poor heathland and sandy grassland communities. However, at the beginning of the restoration process, additional management measures are necessary to faster restore abandoned habitats, especially highly degraded heaths.