Refine
Year of publication
Document Type
- Doctoral Thesis (245)
- ResearchPaper (35)
- Report (15)
- Master's Thesis (13)
- Bachelor Thesis (12)
- Part of a Book (10)
- Book (6)
- Habilitation (6)
- Part of Proceeding (6)
- Diploma Thesis (5)
Language
- English (361) (remove)
Keywords
- Nachhaltigkeit (27)
- Export (12)
- Produktivität (11)
- Biodiversität (10)
- Entrepreneurship (10)
- productivity (10)
- sustainability (10)
- Deutschland (9)
- Germany (9)
- Exports (8)
Institute
- Frühere Fachbereiche (49)
- Fakultät Wirtschaftswissenschaften (35)
- Fakultät Nachhaltigkeit (30)
- Institut für Ökologie (IE) (28)
- Nachhaltigkeitsmgmt./-ökologie (27)
- BWL (14)
- Institut für Nachhaltigkeitssteuerung (INSUGO) (14)
- VWL (14)
- Institut für Nachhaltige Chemie und Umweltchemie (INUC) (12)
- Psychologie/Wirtschaftspsychologie (12)
Forest ecosystems significantly contribute to global carbon (C) sequestration and therefore play a crucial role for climate change mitigation. At the same time, forests were and are subjected to past and current environmental changes with consequences for the functioning of forest ecosystems and their associated ecosystem services. Forests in Central Europe are highly influenced by former settlement activities and land-use changes, as well as silvicultural management measures. Until the beginning of the 19th century anthropogenic activities caused a tremendous decline of the forest area. The resulting timber shortage led to large scale afforestations on previously agriculturally used land (e.g. heathlands, grasslands and croplands) during the 19th and 20th century. Widespread afforestation programs created recent forest ecosystems (i.e. young forest systems in terms of their development history). Despite the positive effect of increasing the forest area of Central Europe, the ecological effects of these land-use changes on forest ecosystems remain poorly understood. In addition, most forests in Central Europe are under silvicultural management, while the knowledge about the consequences of management measures on forest ecosystem functioning, particularly in the face of ongoing global environmental changes, is also still limited. In order to increase the understanding of ecosystem processes in forests, an assessment of conceivable shifts in ecosystem functions caused by former land-use changes and forest management is required. By analysing aboveground growth rates of European beech (Fagus sylvatica L.) in response to environmental change drivers, such as climate extremes and nitrogen (N) deposition, the presented thesis aims to assess the role of land-use and management legacies in modulating present responses to drivers of environmental change. To this end, annual radial growth rates of individual trees were measured in mature beech stands. The investigated stands differed either in their land-use history (i.e. ancient forest sites with a forest continuity > 230 years versus recent forests afforested on former arable land ~ 100 years ago) or their forest management history (i.e. managed forest sites versus short-term and long-term unmanaged forest sites). Measurements of radial growth rates were complemented by analyses of the fine root systems, soil chemical properties and crown projection areas to gain insights into the mechanisms underlying alterations in tree growth. Within the projects of the presented thesis, shifts in the climate-growth relationships driven by land-use and management legacies were analysed. In addition, land-use legacy mediated differences in the climate-nitrogen-growth relationships were assessed. The key findings are: (I) Soil legacy driven alterations in the fine root systems cause a higher sensitivity of radial increment rates to water deficits in summer for trees growing on recent forest sites than for trees growing on ancient forest sites. (II) Management legacies (in terms of tree release) enhance the sensitivity of beech’s radial growth to water deficits in spring through changes in crown sizes. (III) Interacting effects of spring water deficits and co-occurring high deposition of reactive N compounds lead to stronger radial growth declines in trees growing in ancient forests. This is likely caused by resource allocation processes towards seed production, which is, in turn, mirrored by decreasing radial growth rates. In this context, high N deposition likely boosts mass fructification in beech trees. Overall, it has been demonstrated that the ecological continuity plays a crucial role in modulating both climate sensitivity and the growth response to interacting effects of water deficits and nitrogen deposition in beech trees. The presented thesis identified a trade-off between the climate sensitivity and maximised growth rates within beech trees, depending on forest history. The results show that the growth of beech in ancient, unmanaged beech forests is less sensitive to water deficits than in recent and managed beech forests. Additionally, interacting effects of spring water deficits and N deposition likely increase the reproductive effort of beech trees, particularly in ancient forests. Thus, the results of this thesis once again underpin the uniqueness of ancient, unmanaged beech forests, whose importance for the conservation of biodiversity has been widely acknowledged. In summary, the presented thesis highlights the need to consider the ‘ecological memory’ of forest ecosystems when predicting responses to current and future environmental changes.