The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 11 of 415
Back to Result List

Identifizierung von Rebound-Effekten in Consequential LCA

Identifying rebound effects in consequential LCA

  • Eine der kolumbianischen Strategien zur Diversifizierung und Dekarbonisierung des Energiesektors ist die Förderung der Nutzung unkonventioneller erneuerbarer Ressourcen (NCRR). Zu diesem Zweck erließ die Regierung am 2014 das Gesetz 1715 zur Förderung von NCRR und Verbesserungen der Energieeffizienz in diesem Sektor. Obwohl dies vermutlich dazu beitragen wird, die internationale und nationale Verpflichtung zur Reduzierung der CO2-Emissionen um 20 % im Jahr 2030 zu erreichen, kann diese Annahme nicht auf breiterer Basis getestet werden, ohne die Umweltauswirkungen zu berücksichtigen, die solche Initiativen im Haushaltssektor, dem größten Stromverbrauchssektor in Kolumbien, haben können. In dieser Arbeit wird der Umwelt Rebound-Effekt (ERE) gemessen, wenn der Anteil der Windenergie im kolumbianischen Stromnetz im Haushaltssektor erhöht wird. Zu diesem Zweck wurden eine prozessbasierte Ökobilanz (P-LCA), ein erweitertes Umwelt-Input-Output-Modell (EEIO) und Re-spending-Modelle (nahezu ideales Nachfragesystem AIDS) verwendet. Der direkte Rebound-Effekt wurde anhand der Preiselastizität der Stromnachfrage gemessen; außerdem wurden die Umwelteinsparungen bei einer Erhöhung des Anteils der Windenergie im Netz mittels P-LCA berechnet. Zu diesem Zweck wurde eine P-LCA für einen Windpark in Kolumbien durchgeführt, während die Informationen für andere Energieressourcen (Wasser, Kohle, Gas, Solar und Wärme) aus der Ecoinvent 3.4 Datenbank entnommen wurden. Zur Berechnung des indirekten Umwelt Rebound-Effekts wurden die für die Umwelteffizienz erzielten monetären Einsparungen berechnet. Zu diesem Zweck wurde eine AIDS-Methode angewandt, um die marginalen Budgetanteile (MBS) zu erhalten. Durch Kombination der ermittelten MBS mit dem EEIO-Modell wurden die monetären Einsparungen in Umweltindikatoren umgerechnet. Der ERE wird für zehn Wirkungskategorien dargestellt (Klimawandel (CC), Versauerung (A), Ökotoxizität (E), marine Eutrophierung (MEUT), terrestrische Eutrophierung (TEUT), karzinogene Wirkungen (CE), nicht karzinogene Wirkungen (NCE), Abbau der Ozonschicht (OD), photochemische Ozonbildung (POC) und anorganische Wirkungen auf die Atemwege (RES)). Darüber hinaus wurde eine empfindliche Analyse durchgeführt, um die Variabilität der ERE bei verschiedenen Werten des direkten Rebound-Effekts und verschiedenen Prozentsätzen der Preiseffizienz zu messen. Die Ergebnisse zeigen, dass die Einbeziehung des Umwelt Rebound-Effekts im Allgemeinen eine nicht vernachlässigbare Auswirkung auf die gesamten Umweltindikatoren in allen untersuchten Jahren hat. Diese Auswirkungen reichen von 5 % (Eutrophierung) bis 6,109 % (Bildung photochemischer Oxidantien) für das kombinierte Modell, während die Werte für das Einzelmodell zwischen 1 % (Eutrophierung) und 9,277 % (Bildung photochemischer Oxidantien) liegen. Eine Sensitivitätsanalyse der Preiselastizität des Stroms und des Strompreises zeigt außerdem, dass die ERE auf unterschiedliche Weise variiert, d.h. Änderungen dieser Parameter könnten die Auswirkungen um bis zu <1% bzw. 38% verändern. Backfire-Effekte sind für 8 der 10 untersuchten Umweltauswirkungen in unterschiedlicher Größenordnung über die Jahre hinweg vorhanden, was im Wesentlichen von den für Re-Investitionen verfügbaren Einsparungen abhängt. Schlüsselwörter. Umwelt-Rebound-Effekt, Verbesserung der Umwelteffizienz, nicht-konventionelle erneuerbare Ressourcen, LCA, STIRPAT.
  • One of the Colombian strategies to diversify and decarbonize the energy sector is encouraging the use of non-conventional renewable resources (NCRR). For doing so the government issued in 2014 the Law 1715 to promote NCRR and energy efficiency improvements into the sector. While presumably it will help to achieve the international and national commitment to reduce the CO2 emission by 20% in 2030, this assumption cannot be tested broader without taking in account the environmental consequence that such initiatives may produce in the household sector, the greatest electricity consuming sector in Colombia. This thesis measures the environmental rebound effect (ERE) when increasing the shares of wind power into the Colombian power grid in the residential (household) sector. For doing so, a process-based Life Cycle Assessment (P-LCA), an environmental extended input output (EEIO) model and re-spending models (almost ideal demand system AIDS) were applied. Direct rebound effect was measured thought the elasticity price of the electricity demand; furthermore, the environmental savings for increasing the shares of wind power into the grid were calculated via P-LCA. For doing so, a P-LCA for a wind farm in Colombia was performed, whereas the information for other energy resources (Hydro, Coal, Gas, Solar and Thermal) where collected from Ecoinvent 3.4 database. To calculate the environmental indirect rebound effect the monetary savings obtained for the environmental efficiency were calculated. For doing so, an AIDS was applied to obtain the marginal budget shares (MBS). Combining the MBS obtained with the EEIO model the monetary savings were translated into environmental indicators. The ERE is presented for ten impact categories (climate change (CC), acidification (A), ecotoxicity (E), marine eutrophication (MEUT), terrestrial eutrophication (TEUT), carcinogenic effects (CE), non-carcinogenic effects (NCE), ozone layer depletion (OD), photochemical ozone creation (POC), and respiratory effects, inorganics (RES)). Moreover, a sensitive analysis was conducted to measure the variability of the ERE to different values of the direct rebound effect and different percentages of price efficiency. The results show that the inclusion of the environmental rebound effect has generally a non-negligible impact on the overall environmental indicators across all studied years. Such impacts ranging across impact categories from 5% (eutrophication) and 6,109% (photochemical oxidant creation) for the combined model, whereas for the single model the values fall on the ranges of 1% (eutrophication) and 9,277% (photochemical oxidant creation). Further, a sensitivity analysis of the elasticity price of the electricity and the price of the electricity reveals that the ERE varies in different ways, specifically, changes in these parameters could vary the impacts, respectively, by up to about <1% and 38%. Backfire effects are present for 8 of the 10 environmental impacts studied in different magnitudes across the years, depending meanly of the savings available to re-invest. Keywords. Environmental rebound effect, environmental efficiency improvement, non-conventional renewable resources, LCA, STIRPAT.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Johan Andres Velez HenaoORCiDGND
URN:urn:nbn:de:gbv:luen4-opus4-11756
URL: https://pub-data.leuphana.de/frontdoor/index/index/docId/1175
Advisor:Jesus Antonio Hernandez Riveros (Prof. Dr.)
Referee:Jesus Antonio Hernandez Riveros (Prof. Dr.), Andreas Möller (Prof. Dr.)ORCiDGND, Tobias Viere (Prof. Dr.)ORCiDGND
Document Type:Doctoral Thesis
Language:German
Year of Completion:2021
Date of Publication (online):2021/08/25
Date of first Publication:2021/08/31
Publishing Institution:Leuphana Universität Lüneburg, Universitätsbibliothek der Leuphana Universität Lüneburg
Granting Institution:Leuphana Universität Lüneburg
Date of final exam:0021/07/02
Release Date:2021/08/31
Note:
Binationale Promotion von Universidad Nacional de Colombia, Medellin und Leuphana Universität Lüneburg 2021
Das Rahmenpapier der kumulativen Dissertation enthält 5 Beiträge
Institutes:Nachhaltigkeit
Licence (German):License LogoDeutsches Urheberrecht