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Abstract

In past digital health interventions, an issue has been that participants drop out

over time which is referred to as the ”law of attrition” (Eysenbach, 2005). Based

on this, we propose that though initially, participants respond to the intervention,

there is a hypothesized second diminishing e↵ect of an intervention. However,

we suggest that on top, there is a third e↵ect. Independent of the individual

notification or nudge, people could build the knowledge, skills and practice needed

to independently engage in the behavior themselves (schraefel and Hekler, 2020).

Using behavioral theory and inspired by prior animal computational models of

behavior, we propose a dynamical computational model to allow for a separation

of intervention and internalization. It is targeted towards the specific case of the

HeartSteps intervention that could not explain a diminishing immediate e↵ect

of the intervention, second hypothesized e↵ect, while a person’s overall steps re-

mained constant, third e↵ect (Klasnja et al., 2019). We incorporate a habituation

mechanism from learning theory that can account for the immediate diminish-

ing e↵ect. At the same time, a reinforcement mechanism allows participants to

internalize the message and engage in behavior independently. The simulation

shows the importance of a participant’s responsiveness to the intervention and a

su�cient recovery period after each notification. To estimate the model, we use

data from the HeartSteps intervention (Klasnja et al., 2019; Liao et al., 2020), a

just-in-time adaptive intervention that sent two to five walking suggestions per

day. We run a Bayesian estimation with Stan in R.

Additional validation tests are needed to estimate the accuracy of the model

for di↵erent individuals. It could however serve as a template for future just-in-

time adaptive interventions due to its generic structure. In addition, this model is

of high practical relevance as its derived dynamics can be used to improve future

walking suggestions and ultimately optimize notification-based digital health in-

terventions.

Keywords: computational modelling, dynamical systems, just-in-time inter-

vention, digital health, physical activity
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1 Introduction

Participants of digital health studies have been shown to drop out over time,

which has been referred to as the ”law of attrition” (Eysenbach, 2005, p. 1). The

law of attrition poses a problem in various fields across digital health: In social

media interventions, there frequently was a dropout rate of 20% according to a

meta-analysis by Williams et al. (2014). Even more, in computer-based trials to

improve depression, a meta-analysis found that 57% of people did not complete

the studies (Richards and Richardson, 2012). In studies targeting drinking, attri-

tion rates up to 42% were found (Riper et al., 2011). Similarly, physical activity

(PA) interventions report attrition rates between 25 and 40% (Spittaels et al.,

2007; Anderson-Bill et al., 2011; Kelders et al., 2011). All these interventions

have usually tried to avoid attrition and keep participants active throughout the

study.

At the same time, researchers in digital health also strive to support their

participants to build the knowledge, skills and practice to engage in healthy

behavior independently (schraefel and Hekler, 2020). There have been e↵orts

to empower participants in digital health interventions such that they engage in

new behaviors themselves (Samoocha et al., 2010; Sousa et al., 2020). However,

these usually do not focus on participants’ behavior outside of the intervention

and evaluate the e↵ect size on whether participants reacted to the intervention

(Samoocha et al., 2010; Sousa et al., 2020). Hence, we suggest to incorporate a

slower process into experimental designs that allows for a positive overall outcome

of the intervention even if participants drop out. Participants are supported as

long as they need it, but they are eventually empowered to engage in healthy

behavior independently of the immediate e↵ect of the intervention.

Such an intervention type would show three e↵ects. First, there presumably

is an e↵ect of the intervention, immediately after nudges or notifications are sent.

Second, with repeated exposures to the intervention, the e↵ect decreases, leading

many people to drop out after some time (Eysenbach, 2005). Third, throughout

the trial, people will internalize the message of the intervention such that they

engage in the behavior independently and improve their behavior overall. With

this, we explicitly separate the decreasing e↵ect, the key hypothesized driver of

attrition, from the internalization of knowledge, skills and practices.

We recognized a pattern of independent immediate (second hypothesized ef-

fect) and overall behavior (third e↵ect) in an intervention that sends context cues

to walk. This HeartSteps intervention was evaluated via a micro-randomized trial

design, which enables disaggregation of these two e↵ects (Klasnja et al., 2019).
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Participants were randomized to receive walking suggestions or not as notifica-

tions up to five times per day for a period of 40 days. For all 37 participants, a PA

wearable (Jawbone Up) measured their steps per minute and their phones tracked

their location. Based on a person’s calendar and if they snoozed notifications,

it was determined if a person was available and if available, were randomized

to receive a notification or not. Though participants responded well and walked

66% more steps after a notification initially, the response diminished over time

(Klasnja et al., 2019). Yet, in the overall trajectory of daily steps across the 40

days, the participants did not show this decline (Klasnja et al., 2019). Klasnja et

al. (2019) could not explain this e↵ect. Such a diminishing response to the inter-

vention (second hypothesized e↵ect) is similar to the law of attrition (Eysenbach,

2005). Both describe decreasing responses to the intervention. However, the law

of attrition corresponds to a nomothetic phenomenon, a certain percent of users

drop out (Eysenbach, 2005). It does not necessarily describe that idiosyncrat-

ically, users can also exhibit a decreasing response to subsequent deliveries of

notifications as a mechanism that could partially explain the nomothetic obser-

vation of attrition. We define the idiosyncratically decreasing immediate reaction

after repeated responses like in HeartSteps as the decreasing intervention e↵ect.

The e↵ect as we define it relates to the immediate reaction and leaves room for

a potentially independent longterm process that drives internalization (third hy-

pothesized e↵ect).

Specifying the computational dynamical model

To explore the decreasing intervention e↵ect and the potential for internalizing the

skills, knowledge and practice, we build a dynamical computational model that

allows for a separation of intervention and internalization. The computational

model was informed by the HeartSteps intervention, but with the aspiration of

the model to be informative for other interventions as well. Computational mod-

els are a key method to model dynamics as traditional statistical models are not

suited to model its complexity (Hekler et al., 2016; Spruijt-Metz et al., 2015).

Mathematical descriptions of dynamical phenomena can explicitly state how a

model’s compartments are related and how they interact over time (Smaldino,

2017). The dynamical hypothesis is then iteratively formalized within a simula-

tion environment (Chevance et al., 2020). First, the simulation itself is essential

to understand and analyze the hypothesis. It should match the current knowledge

of behavior change, e.g. such that at the end of the day, participants stop walking

when they are tired (Choi et al., 2019). Second and more importantly, the simu-
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lation gives the researcher the opportunity to study the inherent model dynamics

and draw conclusions from it. Hence, computational models are well-suited to

articulate and analyze a new set of dynamics such as a potential separation of

intervention and internalization.

The central focus of this dynamical model therefore is to specify the dynamics

that translate into the separation of the rapid intervention e↵ects and internal-

ization, particularly a decreasing short-term reaction to the notification and a

constant long-term walking response.

Figure 1: The decreasing intervention e↵ect with an overall increase in walks.

In order to account for both a decreasing short-term and a constant long-

term walking behavior, there needs to be a dynamic that di↵erentiates between

the e↵ect of the notification and the long-term dynamic that drives the overall

walking. Behavioral learning theory provides a good starting foundation. It

splits up processes into stimulus (S), response (R) and consequence (C) (Skinner,

1953). This way, the e↵ect of the input notification (S) is separate from the the

consequence (C) reinforcing the response walking (R) that could drive the overall

response (Skinner, 1953). We therefore base this model in the SRC framework

and use it to allow a separation of the intervention and internalization.

We argue that to achieve the highest e↵ect of the trial, the correct timing and

a person’s situatedness becomes essential (Nahum-Shani et al., 2018; Choi et al.,

2019). The intervention delivery needs to be tailored to a person’s state such

that a person potentially maximizes how much is internalized from it. One way of

tailoring has been proposed in just-in-time adaptive interventions (JITAIs), which

is ”an intervention design aiming to provide the right type/amount of support, at

the right time, by adapting to an individual’s changing internal and contextual

state” (Nahum-Shani et al., 2018, p. 448). The HeartSteps intervention is such
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a JITAI, which is why this model explores the specific case of JITAIs. To tailor

notification delivery, it is theorized that there are four stages of receptivity for

an intervention, perception, availability, adherence and performance (Choi et al.,

2019). The dynamical model proposed here integrates two of these stages to

optimize notification delivery. It includes factors that resemble availability as

well as a process to mirror adherence.

This paper therefore has two goals:

1. Our aspiration is to deliver a framework to explain the decreasing interven-

tion e↵ect, while also accounting for internalization. It should potentially

allow people to build the knowledge, skills and practice people need to

engage in healthy behavior independently of the intervention.

2. For the specific context of the HeartSteps intervention, we aim to optimize

future JITAIs, derive insights to the dynamics of such intervention and

ultimately improve the timing of future walking interventions.
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2 The model in the Stimulus-Response-Consequence

framework

The model has six decisive features, and each will be elaborated in this section:

1. the decreasing intervention e↵ect - part 1 of the separation of inter-
vention and internalization, modeled by the S in the SRC framework

2. internalization of the intervention - part 2 of the separation of inter-
vention and internalization, modeled by the C in the SRC framework

3. processing variables - to account for human behavior in the physiological
SRC framework

4. availability - to account for internal and external barriers

5. adherence - to account for the decision to walk, based on decision theory

6. di↵erent time aggregations - to account for historical data that influence
the decision

2.1 Separation of intervention and internalization: The

decreasing intervention e↵ect

In the SRC framework, the behavioral response (R) to a repeated stimulus (S)

decreases and is called habituation (Groves and Thompson, 1970; Rankin et al.,

2009). In the same manner, the decreasing intervention e↵ect could be repre-

sented by the repeated notification (S) and could therefore follow similar dy-

namics to habituation. Past studies have found that participants indeed can get

accustomed to repeated notifications (S), they ignore them and even habituate

to them (Anderson et al., 2016; Vance et al., 2019). Habituation as described

by Staddon (2001) follows a negative exponential distribution in the response.

The model includes Staddon’s 1-unit stimulus type habituation model with a

two-parameter integrator Nt for the perception of the stimulus, visualized in fig-

ure 2. The �s used here and all following �s are idiosyncratic gain parameters.

Mathematically, it follows the following dynamic:

N0 = 0

Nt = �11St�1 + �12Nt�1

impSt = St�1(1�Nt�1)

(1)
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The integrator Nt drives the decreasing impact of the stimulus. It is the gradually

increasing ”inhibitory e↵ect” (Staddon, 2001, p. 118), see figure 2. The resulting

impact of the stimulus impSt is then the stimulus subtracted by the growing

inhibitory e↵ect, hence being responsible for the eventual idiosyncratic downward

short-term response.

Figure 2: Modelling the decreasing intervention e↵ect as a 1-unit stimulus-type habit-
uation model with a two parameter integrator as the inhibitory e↵ect Nt as proposed
by Staddon (2001) within the stimulus-response framework.

2.2 Separation of intervention and internalization: The

internalization

The second part of the separation of intervention and internalization requires the

long-term walking behavior to be independent from the decreasing short-term

response to the notification. In the SRC framework, separate from whether a

stimulus was given or not, a satisfactory consequence (C) of an action (R) drives

participants to repeat this action (Skinner, 1953), which is also considered the

law of e↵ect (Thorndike, 1898). If we perceive the consequence (C) of walking (R)

to be mostly positive, we assume that walking induces future episodes, the more

a participant walked, the more likely they are to walk in the future because of a

positive consequence (C). Behavioral models call this mechanism ”reinforcement”

(Skinner, 1953, p. 65). This reinforcement is not influenced by the notification

directly and could work independently of it. Internalizing the intervention is

therefore modeled by positive reinforcement from walking, see figure 3.

We incorporate reinforcement both as a fast- and slow-changing process. The

fast-changing process immediately feeds back into the system, the slow-changing

process builds up over longer periods of time (Lunansky et al., 2020), see section

2.6. In the frame of building knowledge, skills and practice, both slow and fast

reinforcement from walking matches the notion of building practice (schraefel

and Hekler, 2020). Just like practice is established with more reinforcement,

skills and knowledge could be modelled by a regularly reinforced compartment

as well as other accumulative mechanisms (e.g. self-regularization, memory). We
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only model the process of internalizing practice, but recognize that it could be

expanded to model other internalization processes as well.

To assess the degree of the slower process of internalization, this computa-

tional model relies on a continuous timeline. In JITAIs, the focus is mostly on

the moment after a notification has been sent. Models often do not employ a

continuous timeline but only highlight the time steps after the notification that

are relevant to the proximal outcome of the intervention (Nahum-Shani et al.,

2018; Klasnja et al., 2019). Hence, to describe the an overall behavior not just

after notifications, the behavior would have to be monitored throughout the in-

tervention, not just after a notification. Thus, we utilize a continuous timeline in

the dynamical computational model.

Figure 3: Modelling the overall increase of walks by introducing reinforcement from
walking, the consequence (C) in the stimulus-response-consequence framework.

2.3 Modelling processing variables

The SRC framework represents physiological processes of learning. In physiology,

there is a direct link of the stimulus (S) to the response (R) (Skinner, 1953). The

reasons, mediators and moderators of engaging in physical activity however are

manifold and more diverse than such an S-R link (Rhodes et al., 2019; Aromatario

et al., 2019; Carey et al., 2018; Dishman et al., 1985). An example from self-

determination theory for this is motivation. There, motivation takes an important

role in mediating the notification to physical activity. Motivation is itself driven

by factors like individual di↵erences, the type of goal, the environment or the

psychological needs of the person like autonomy (Fortier et al., 2007; Rhodes

et al., 2019; Deci and Ryan, 2000). In digital health interventions, one cannot

assume a direct notification (S) - physical activity link. The model will therefore

need to be extended to target human behavior.

Hence, we add an intermediate compartment between the stimulus (S) and

walking. Out of all possible factors, we choose a generic term for simplicity and

describe the processing step as attitude At, a general term that can include both

implicit and explicit evaluations as well as a↵ective and instrumental attitudes
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(Gawronski and Bodenhausen, 2014). The notion of attitude also fits into the

learning framework: of all psychological constructs, attitudes are foremost viewed

to be the result of learning (Doob, 1947). This is why reinforcement from walking

proposed in section 2.2 can now be assigned to flow back into the attitude towards

walking, see figure 4. By introducing the attitude At, the model can better

represent human behavior in the learning framework SRC.

2.4 Modelling availability

To tailor the notification to the needs of a person, we consider two of the four

receptivity stages in JITAIs proposed by Choi et al., availability and adherence

(2019). Availability is defined as ”when a user is capable of engaging in a target

behavior suggested by the JIT intervention, and it is acceptable based on personal

and social norms, disregarding motivational factors” (Choi et al., 2019, p. 5).

Factors that influence availability can be sitting in a class or meeting, working,

social settings, eating, physical conditions, being in a vehicle, talking on the

phone, activity type and being focused on the current task among others (Sarker

et al., 2014; Choi et al., 2019). In line with the introduction of a continuous

timeline for this model, we extend the concept of availability from a state of

opportunity for the JITAI to work (Nahum-Shani et al., 2018) towards a state of

opportunity for the participant to engage in the behavior. This shifts the focus

of availability, adherence and performance from a state when it is best to receive

a notification to a state when it is best to engage in the internalized behavior.

The contextual variables It and Et resemble these internal and external barriers

that prevent participants from walking because a participant is unavailable.

The basic model now contains the SRC loop from learning theory extended

by availability variables and a processing step to match human behavior. Similar

to attitude, the availability compartments are kept generic in the model diagram

to be able to represent a number of variables. Its generic structure consists of

only three compartments: notification, attitude and walking, see figure 4.

2.5 Modelling the decision to walk

As soon as a participant is available, he or she can potentially advance to the next

step of receptivity, adherence, and ”perform a target behavior” (Choi et al., 2019,

p. 5). Adherence is a binary assessment of whether or not a person engaged in

that behavior or not. Though the HeartSteps intervention considers availability
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Figure 4: The model is an extended SRC learning loop: the notification St, the interme-
diate step coined as attitude At, and walking Wt including two exogenous availability
variables. The walking reinforcement to attitude At is the consequence (C).

variables, it does not explicitly account for adherence variables when deciding to

send a notification (Klasnja et al., 2019).

Models in computational digital health often employ linear relationships (Mar-

tin et al., 2020; Freigoun et al., 2017; Conroy et al., 2019). In such a setting, if a

person is not available, he or she would walk less, but would rarely stop walking

completely. Be it a meeting, sleep or just long sedentary intervals, at each in-

stance t, a person would be walking. This formalization of walking as continuous

was possible based on past treatment of t as one day. Consequently, for more fre-

quent sampling of t, a di↵erent definition of walking is needed. To allow a person

to have time intervals without walking, there needs to be a threshold between

walking and not walking. For simplicity, and in line with the binary concept of

adherence, we introduce only two categories and set walking to be binary.

Instead of having a deterministic threshold, we postulate that a set of factors

influences the probability of a person walking and eventually the person taking a

decision to go for a walk or not go for a walk. According to Gold and Shadlen

(2007), such a decision is theorized to be a process in the brain that reallocates

probabilities dependent on a set of factors, shown by figure 5. Within this decision

framework, we define the variable Wt as a walking bout.

We set the overall likelihood to walk to be Bernoulli -distributed. It returns

a binary decision for walking. Accordingly, walking Wt is a stochastic sequence

of independent Bernoulli random variables Wt 2 {0, 1} with a time-dependent

probability Pr{Wt = 1} = p(Ut), where Wt = 1 represents the participant is
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Figure 5: The elements of a decision according to Gold and Shadlen, p. 537 (2007).

walking during time interval t, and Ut is the subjective utility at time t. The

time-dependent probability Pr{Wt = 1} is the prior for the decision to walk.

We expect the prior probability to walk Pr{Wt = 1} to be lower than the prior

probability to not walk Pr{Wt = 0}.

p(Wt) = 1
1+e1�Ut

Likelihood:

Wt ⇠ Bernoulli(p(Wt))

(2)

Attitude towards walking At then serves as what Gold and Shadlen (2007)

would refer to as the ”value of the decision” (p. 538) including all the benefits

an individual might associate with walking. It is supported by reinforcement

from walking Wt.1 The internal and external barriers It and Et correspond to

1Interesting enough, the decision framework and the SRC framework describe the same
idea here: Just like walking is not only triggered by the stimulus in the SRC framework, the
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the context in Gold and Shadlen’s (2007) visual. The context is outside of the

reallocation process in the brain and merely provides the range of decision options

to decide from. Just like availability in JITAI, the internal and external variables

It and Et in the decision framework limit the range of options a participant can

potentially choose from. However, in Gold and Shadlen’s (2007) figure, they are

not inherently part of the decision process, but are seen as fixed at time t. Since

the SRC model builds on an array of decisions over time, we assume that context

and thus the range of decisions is dynamic, too. Thus, we build on the basic

structure of their decision model and use context as variables, not as constants,

in the model.

Moreover, Gold and Shadlen’s (2007) model lacks the influence of past deci-

sions Wt�1 on the current decision. They are potentially incorporated as priors,

but in an array of multiple decisions, their relationship needs to be specified.

Therefore, we include the history of decisions and assign di↵erent influences to

di↵erent levels of aggregation. We define the most recent decisions as contribut-

ing to the adherence to walk (Choi et al., 2019). If a person has just engaged in

a walking bout Wt�1 or has walked a lot that day already dayWt, the person will

be less likely to walk , see section 2.6.

To finally determine the probability of walking, all factors contributing to

walking are collected in a utility function Ut for walking, see figure 6. The utility

function Ut serves as an immediate desire to walk that fluctuates. The utility of

walking at time t is then given by the overall value associated with walking At

weighed against the availability to walk with It and Et and the factors influencing

the adherence to walk Wt�1 and dayWt.

Ut = �45At�1 � (�46It�1 + �47Et�1+

�42Wt�1 + �48 dayWt) + ✏1,t
(3)

Framing walking inside the decision framework very much fits to the JITAI con-

text. In JITAIs, the right time is not defined as clock time, but as a psychological

state (Scholz, 2019; Nahum-Shani et al., 2018). First, the fluctuating utility Ut

in this model serves as the psychological state. Then, the dynamical system in-

corporates a person’s availability into the decision which then corresponds to the

adherence stage of receptivity for JITAIs (Choi et al., 2019). Taken together,

decision to walk cannot solely be a ”perceptual decision” in the decision framework (Sugrue
et al., 2005, p. 365). Instead, it is a ”value-based decision” (p. 365) driven by the associated
value representation, so the reinforcement in the SRC framework (Skinner, 1953).
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Figure 6: The SRC model adjusted to adherence by mimicking a moment of decision
of going for a walk or not going for a walk. Attitude At, internal and external barriers
It and Et as well as recent walking Wt�1 and dayWt influence the decision.

the model strongly represents the idea of JITAIs and can o↵er a computational

model template for any JITAI.

2.6 Modelling di↵erent time aggregations

in the JITAI context, it is recommended to divide continuous time into di↵erent

time scales and to ”develop assumptions on interrelations between the variables

of interest within and across these di↵erent time scales” (Scholz, 2019, p. 9; cf.

Nahum-Schani et al., 2018). Depending on the layer of abstraction, one variable,

aggregated at di↵erent time units, might resemble a variety of constructs (George

and Jones, 2000). This is why we introduce three levels of lags for the response

walking such that each aggregation refers to a di↵erent construct, see the green

aggregations in figure 7.

1. just-in-time as going for a walk: In line with research on decision-

making (Gold and Shadlen, 2007; Sugrue et al., 2005), we operationalize the

response walking Wt as a binary walking bout at point in time t, similar to

a decision that has been taken. Walking bouts have been defined as walking

for 10 minutes or longer and are associated with positive health benefits

(Glazer et al., 2013; Strath et al., 2008). In the HeartSteps intervention,
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people have been either nudged to ”stand up and do light stretches for 2-3

minutes” and to ”take a few minutes” to get up or the suggestions ”intended

to encourage bouts of 500 to 1,000 steps” (Klasnja et al., 2019, p. 4).

Matching the intervention data, we choose t to be 30 minute intervals such

that Wt = 1 if a person walked for at least 3 minutes or took more than 500

steps in that 30 minute interval. More research is needed to operationalize

walking bouts in JITAI contexts.

2. daily aggregate as a measure of tiredness: during the course of a day,

a person might feel a short-term stock of behavior similar to a stint. If at

time t, a person has already walked enough for that day, he or she will be

tired and will not adhere to more walking at time t (Choi et al., 2019; Sarker

et al., 2014). According to Glazer et al. (2013), on average, participants did

one walking bout of moderate to vigorous intensity per day. We introduce

the daily aggregate as dayWt.

3. weekly aggregate as long-term stock behavior: the median amount

of daily walking bouts in the past 7 days. It assesses an overall level of

walking and represents more of a general fitness and readiness to walk at

time t. Weekly aggregates are a common form of describing general walking

behavior (World Health Organization, 2010). We introduce this as longWt.

Figure 7: The SRC model including the aggregation of walking bouts on three levels.
The full dynamical system includes the threshold, the two exogenous factors, three
layers of aggregation of the response walking Wt and its interrelationships.
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2.7 Mathematical model

t = 0, 1, ..., N (as 30 min intervals)

N = 48 · 40 days = 1920 (slightly varying across people)

mt = t mod 48 (time points t since midnight)

Input to the system:

St 2 {0, 1}

Nt = �11St�1 + �12Nt�1 (4.1)

The system:

Wt ⇠ Bernoulli(p(Wt)) (4.2)

p(Wt) =
1

1+e1�Ut
(4.3)

Ut = �45At�1 � (�46It�1 + �47Et�1+

�42Wt�1 + �48 dayWt) + ✏1,t (4.4)

At = �55At�1 + �51St�1(1�Nt�1)+ (4.5)

�52Wt�1 + �9(�59 longWt � At�1) + ✏2,t

Exogenous Variables:

It =
X

�6ixi 8i 2 internal barriers (4.6)

Et =
X

�7ixi 8i 2 external barriers (4.7)

Aggregating the response:

dayWt =
mtX

i=0

Wt�i (4.8)

longWt = Median(
48·7X

i=0

dayWt�i)

8i 2 mi = 0 (4.9)

Errors:

✏i,t ⇠ N(x̄ = 0, � = 0.01) 8i = 1, 2 (4.10)
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1. Input St: the input to the system is a binary sequence of events in time.

It describes if a notification has been sent or not. In the operant learning

framework, it corresponds to S.

2. Inhibitory e↵ect Nt: a linear two-parameter integrator we call Nt, ac-

cording to Staddon’s (2001) 1-unit stimulus-type habituation model.

3. Response Wt: the target Wt is a stochastic sequence of independent

Bernoulli random variables Wt 2 {0, 1}, and its probability is given by

p(Wt). We summarize the amount of steps a participant took within 30

minutes and count it as a walking bout Wt = 1 if it lasted 3 minutes or

longer or was larger than 500 steps.

4. Probability to walk p(Wt): a logistic conversion of the walking utility

Ut, a probability that determines how likely it is for a person to engage in

a walking bout.

5. Momentary utility of walking Ut: a weighted linear utility function

for walking with a normally distributed error, a mental calculation before

deciding to go for a walk. It serves as an immediate desire to walk that

fluctuates. The utility of walking at time t is given by the overall value

associated with walking At weighed against the availability to walk with It

and Et and the factors influencing the adherence to walk Wt�1 and dayWt

(Choi et al., 2019). If the attitude At is greater, Ut is positive and it lifts

the prior probability to walk. If the barriers for walking are greater, Ut is

negative and it reduces the prior probability to walk.

6. Attitude At: a weighted function with a normally distributed error, trun-

cated to represent a value between 0 and 1, At 2 [0, 1]. Attitude At inherits

from past attitudes At�1, and it is the entity that processes the stimulus,

the input notification St. Furthermore, it receives reinforcement from past

walking experiences, the most recent walking bout Wt�1 and the long-term

walking behavior longWt. The larger the weekly median in longWt is, the

more it will have a positive e↵ect on the attitude. Hence, the more a partic-

ipant walks, the more he or she develops a positive attitude towards walking

At, making it more likely for the participant to engage in walking the next

time.

7. Exogenous factors It and Et: weighted sums of internal and external

barriers that prevent a person from walking. Both serve as contextual cues
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outside of the actual SRC system. If the participant is in a meeting and

cannot walk, the external barrier Et will be positive, adding a barrier to Ut

in equation 4.4. If a person is sick or sleeps and cannot walk, the internal

barrier It will be positive, again adding negative weight to the threshold

in equation 4.4. For the simulation, It and Et are drawn from a Bernoulli

distribution. Both are heavily biased to stay the way they have been in the

last period. If one is sick, one is likely to stay sick at the next point in time,

so It will likely be the same as It+1.

8. Aggregating walking Wt on two additional levels

(a) The daily aggregate dayWt: the amount of walking bouts taken

that day as a measure of tiredness.

(b) The weekly aggregate longWt: the weekly moving median of walk-

ing bouts and the longer-term aggregation of the response.

9. Errors ✏t: normally distributed errors.

2.8 Model considerations

The model makes the following assumptions:

1. All parameters are idiosyncratic and will vary across people while staying

constant for each participant.

2. To account for knowledge about the direction of relationships, parameters

are positive. Potential positive and negative impacts are specified within

the system of equations.

3. The initial values of the parameters are determined by solving the system

of equations at steady state, obtaining the following results:

�42 = 0.3, �45 = 1.8, �48 = 0.2, �52 = 0.1, �55 = 0.9, �59 = 0.11, �9 =

0.1, A0 = 0.5 We set the influence of internal and external variables to

0.5, �46 = 0.5, �47 = 0.5, �51 = 0.5. The gain parameters of the habituation

mechanisms will be derived in section 3.1.

4. All � are gain parameters, determining how important each variable is for

the next, �9 is a rate parameter, corresponding to how fast longWt changes

At.
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3 Simulating the model

In order to understand and analyze the dynamics that translate into the sep-

aration of intervention and internalization, we simulate its behavior using the

software R. Complex systems follow nonlinear dynamics with potentially di↵er-

ent mechanisms involved (Burger et al., 2020) which we intend to demonstrate

using simulation. Thus, we rely on the mathematical specification of our model

to be as simple as possible. This allows us to draw generic conclusions that can

clearly be attributed to the separation of intervention and internalization and it

determines what conditions need to be given for the dynamics to work. In the fol-

lowing, we therefore examine the two dynamics of the separation of intervention

and internalization as well as the final decision to walk:

1. The separation of intervention and internalization: the decreasing interven-
tion e↵ect,

2. the separation of intervention and internalization: the internalization and

3. the decision to walk.

3.1 The decreasing intervention e↵ect

3.1.1 Simulating the short-term decrease

The first dynamic we model is the short-term decrease, the decreasing intervention

e↵ect (second hypothesized e↵ect). As described above, we follow Staddon’s

(2001) 1-unit stimulus-type habituation model. In Staddon’s model, an increasing

amount of stimuli leads to a larger inhibitory e↵ect and a smaller overall impact

of the stimulus. Within the dynamical system, we expect it to also lead to a

decreasing response after repeated notifications.

In Klasnja’s (2019) analysis, the impact of the notification was 66% and 24%

in the beginning, depending on the type of notification sent. To resemble both

and stay between them, we set the desirable impact of the notification �11 to

40%. In line with Staddon’s (2001) formulation of �12 of around 0.9 (p. 120), we

arbitrarily set �12 to be 0.98 such that the inhibitory e↵ect lasts long enough to be

visible when sending 2-5 notifications per day (Klasnja et al., 2019). All derived

quantities in this simulation will be given for varying �11s and �12s, allowing it to

be derived for di↵erent interventions.

To test the functionality (first hypothesized e↵ect), we first run a control

simulation. We employ a one-way analysis of variance (ANOVA) with a control
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condition without a notification, one treatment condition with a constant stimulus

impact and one treatment condition with the proposed habituation pattern acti-

vated. Mechanistically, we expect the following to happen: Though the reaction

to the notification is decreasing over time, at time t, we anticipate the partic-

ipant to react by a slight increase in attitude towards walking At as compared

to At�1. This influences the decision to go for a walk Wt, hence it is likely that

a person will walk after having received a notification. Following habituation,

our hypothesis is that with time, this reaction will decrease in the habituation

condition. The reaction after S will be greatest when a constant stimulus impact

is present and the least without a stimulus. We furthermore expect this dynamic

to be most visible in the immediate reaction after the stimulus At, not in the

overall attitude At.

The simulation in figure 8 shows that this expected pattern can indeed be

observed in the short-term, the immediate reaction after the stimulus At. There

is a significant e↵ect of the type of stimulus on the immediate attitude At at

the p <.001 level for the three conditions (F (2, 273) = 322, p < .001). Post-

hoc comparisons using the Tukey HSD test indicate that all mean scores are

significantly di↵erent, the habituation condition (M = 0.68, SD = 0.15), the

no stimulus condition (M = 0.58, SD = .007) as well as the constant stimulus

condition (M = 0.93, SD = 0.03).

Specifically, in the habituation condition in the right plots, the participant gets

used to the notification and the attitude At kicks less and less after a notification

over time in the right lower plot, resulting in an 18% decrease throughout the

intervention (attitude At after notification = 0.77 � .002 #S, F =13.08, R2 =

0.13, n = 92, p < .001), as opposed to a slight increase without a stimulus in

the left lower plot (attitude At after notification = 0.55+ .001 #S,F =5.27 R2 =

0.06, n = 92, p = 0.024) or with a constant stimulus in the middle lower plot (F

=2.32, R2 = 0, n = 92, p = 0.131).

As expected, the short-term decrease is most visible in the short-term, the

immediate attitude after the notification in the lower plots, not in the middle

plots. These results suggest Staddon’s habituation model can model the short-

term response in the decreasing intervention e↵ect.
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Figure 8: Short-term e↵ect of the notification: To demonstrate the short-term e↵ect of the notification, we plot three di↵erent courses
of the intervention. The full SRC model including habituation is in treatment condition 2 on the right. Without any notifications on the left,
attitude after the notification At in the left lower plot reaches a stable level. With a constant impact of the notification in the middle, the
attitude after the notification At in the lower middle plot regularly hits its maximum possible value. With the habituation mechanism on the
right, the attitude towards walking At in the right middle plot has a similar trajectory than the three previous conditions, only the attitude
after the notification ceases in the right lower plot. The orange line is a linear regression fit.
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3.1.2 The ideal intervention based on responsiveness

The habituation model is associated with a sensitivity to frequency (Rankin et al.,

2009). If interventionists incorporated thoughts on notification frequency, they

could target the decreasing intervention e↵ect and potentially deal with it. More-

over, ”spontaneous recovery” describes that participants can react more strongly

again after stimuli have taken a break (Rankin et al., 2009, p. 2). From ha-

bituation research, it follows that reducing the frequency can bring increase a

participant’s reaction to the stimulus again such that ultimately, the intervention

can be improved and notifications can be sent exactly just-in-time (Nahum-Shani

et al., 2018).

More frequent stimuli lead to a stronger decline in the reaction (Rankin et al.,

2009). Less frequent stimuli lead to a weaker decline and less habituation, be-

cause whenever a stimulus is not present, the participant has time to recover.

Mathematically, this can be attributed to the inhibitory e↵ect vanishing dur-

ing the short recovery period as Nt only inherits parts of what Nt�1 used to

be, Nt = �12Nt�1 for St = 0, allowing it to recover as in spontaneous recovery.

Hence, the less frequent a stimulus is sent, the higher the impact of St can be

after recovery. Figure 9 demonstrates this process and shows that the impact

of St indeed is lower if a stimulus is present more often on the right, where 2-5

notifications were sent per day like in the HeartSteps data (Klasnja et al., 2019).

The impact of St is higher if there is more ”spacing” between stimuli on the left,

as if notifications are sent daily (Staddon, 2001, p. 119). In order to achieve an

ideal intervention, notifications would have to be delivered less frequently, ideally

right when a person has recovered from the impact of the notification St and is

most able to respond to the notification.
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Figure 9: Development of the impact of the stimulus over time. In the right simulation,
the stimulus was sent 2-5 times per day like in the HeartSteps data (Klasnja et al.,
2019). In the left simulation, the notification delivery was randomized on a daily level
instead. The grey line depicts the potential impact a stimulus could have at t. The
actual impact of the notification declines faster if a more frequent stimulus is present.
More frequent notifications (M = 0.15, SD = 0.1) resulted in a 63% lower mean than
less frequent notifications (M = 0.4, SD = 0.04), which was significant at the p <.001
level (t(86.79) = -17.27, p <.001).

To quantify when a person has recovered from the notification, we determine

a person’s responsiveness for a stimulus. For this, we derive the closed form of

Staddon’s 1-unit stimulus type habituation model, see equations 4.1 and 4.5, at

time t:

N0 = 0

Nt = �11St + �12Nt�1

impSt = �51St(1�Nt�1)

In closed form:

impSt = �51St(1� �11

t�2X

i=0

�i
12 St�i�1) (5)

The closed form demonstrates that essentially, the impact of the current stimulus

impSt is always St reduced by some inhibitory e↵ect Nt�1. Mathematically, this

inhibitory e↵ect is a first order dynamical system response which means it is a

time-varying exponential smoothing function on past notifications. From this

follows that, as expected by the sensitivity frequency in habituation, the impact

on St impSt is not only assumed to be dependent on the number of notifications

sent, but on the time passed between them as well, �n�2
12 at time step n for a

notification at t = 1.

We define the potential impact impSt if the participant had received a notifi-

cation at time t as responsiveness, see grey line in figure 9. Following the closed

form for the impact impSt in equation 5, the responsiveness after a notification
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at t = 0 is:

responsivenesst = �51(1� �11 · �t�1
12 ) (6)

Figure 9 illustrates how responsiveness can evolve in di↵erent ways. A person has

recovered from the notification when the grey responsiveness has regained its old

level after a short period, mostly on the left, while on the right, a person does

not have time to recover from the notification. The responsiveness always follows

an asymptotically increasing curve. Figure 10 portrays di↵erent trajectories of

responsiveness depending on the inhibitory e↵ect on impSt �12. Accordingly,

in the ideal intervention, a notification would need to be delivered when the

responsiveness is reasonably high again.

Figure 10: This plot shows ten di↵erent trajectories of the asymptotically increas-
ing behavior of responsiveness. The trajectories correspond to di↵erent values of
the time-varying inhibiting �12. The dashed line marks the desirable point to send
a new notification, 90% of the original impact of S impSt. responsivenesst =
�51(1� �11 · �t�1

12 ) with �11 = 0.4, �51 = 0.4.

To ensure a reasonable impact of the digital health intervention, we set that

participants need to reach 85-90% of their original responsiveness. Intervention-

ists can of course pick their own desired impact level. We describe the time passed

until a participant reaches that responsiveness level as the recovery period and
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derive it by solving for when the responsiveness hits 90% of �51.

0.9 �51 = �51(1� �11 · �x�1
12 )

, recovery period: x = �
�log(

0.1
�11

)�log(�12)

log(�12)
(7)

In figure 10, responsiveness hits 90% of its original value after 10 or even 100

steps in t, depending on the choice for �12. In the dynamical system as defined

in section 2.8, �12 = 0.98 such that in this intervention, after 70 time steps, the

participant would be 90% responsive again. The participant would be at 85%

after a day without a notification (49 time steps).

From the definition of responsiveness, it follows that a person that has gotten

used to notifications can recover again when no notifications are sent anymore.

This means that the decreasing intervention e↵ect is reversible, at least in parts,

even for an individual that is heavily unresponsive to notifications like on the

right in in figure 9. This finding matches the idea of spontaneous recovery from

habituation.

Letting participants take a break and paying attention to the frequency at

which an intervention is delivered is an important insight from the decreasing

intervention e↵ect. In this section, we illustrated that Staddon’s (2001) habitua-

tion model can indeed be used to explain a short-term decrease in a digital health

intervention. The decreasing intervention e↵ect yielded an 18% decrease in the

immediate reaction to the notification.

Certainly, this process is artificial. Following Eysenbach’s (2005) law of attri-

tion, one will probably not achieve a constant impact of the stimulus by merely

waiting for participants to recover as in figure 9. The recovery period will de-

pend on idiosyncratic parameters and daily notifications are therefore an arbitrary

choice dependent on the arbitrary choice of �12. In addition, recovery periods will

likely increase over time leading to participants habituating to the daily notifica-

tion as well. However, this model sets the framework for future discussions of the

decreasing intervention e↵ect. It highlights that notification impacts will likely be

dynamic over time, that recovery periods are important and that interventionists

cannot assume a constant influence of their intervention. Furthermore, we argue

that just like habituation has been incorporated into this model, another equiva-

lent mechanism of an inhibitory e↵ect could be added to account for an increasing

recovery period. Following Staddon (2001), one could set up a whole cascade of

inhibition. The process could work in the exact same manner, and for complexity

purposes, this model only includes the simplified version of habituation.
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Still, from the notion of responsiveness, it follows that the timing of a notifi-

cation is crucial and notifications would have to be delivered when responsiveness

has increased again. Waiting for participants to recover contributes to the noti-

fication to have the highest e↵ect possible.

3.2 Separation of intervention and internalization: The

internalization

3.2.1 Simulating the constant long-term response

The third hypothesized e↵ect is the separation of intervention and internalization,

whereas internalization is the counterforce to the decreasing immediate reaction.

As opposed to the short term, the overall reaction does not decrease. Participants

potentially build the practice needed to engage in the behavior independently.

Mechanistically, we attribute this to reinforcement from walking, the consequence

in the SRC model: There are two influences from walking Wt�1 and longWt back

to attitude At, see equation 4.5. The more a participant walks, the more we expect

their attitude to increase which enables the overall reaction to be independent

from the short-term reaction to St.

This behavior can be replicated in the simulation. In a scenario including re-

inforcement in figure 11, there is a high constant overall attitude At (second right

plot, M = 0.64, SD = 0.11) while still allowing the attitude after the notification

to decrease (third right plot). In a scenario without reinforcement, the decline

due to the decreasing immediate response is visible in a low overall attitude At

(second left plot, M = 0.06, SD = 0.08), not just in the attitude after the noti-

fication At as intended (third left plot). In the left plots, the decreasing reaction

to the notification dominates the system’s behavior and the overall response is

barely independent from S. Reinforcement from walking is therefore crucial for a

high overall attitude At, the di↵erence in overall means across the two conditions

is significant on the p <.001 level (t(3423.71) = 192.58, p <.001).

These results indicate that incorporating a reinforcement mechanism from

walking enables a constant long-term response independent from S. As this is

the necessary second part of the separation of intervention and internalization, it

follows that the SRC framework and this adjusted model can indeed account for

this e↵ect. Its habituation model for S and the reinforcement mechanism from C

allow the overall reaction to be independent from the from the notification St.
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(a) No reinforcement
control condition

(b) With reinforcement
treatment condition

Figure 11: Long-term e↵ect of the intervention: Over the course of the interven-
tion, a participant is simulated to have reinforcement from walking (right) and without
(left). Left: �52 = 0,�9 = 0.

3.2.2 Di↵erentiating between short- and long-term reinforcement

While both reinforcing influences Wt�1 and longWt contribute to the indepen-

dence of the long-term response, the weekly median is especially important for

this process, see figure 12. This figure visualizes how the overall system evolves

if the influences of long-term or short-term reinforcement change respectively.

Each plot collects the results of 80 system simulations with di↵erent values for

�52 and �9. The plots give insights to what a meaningful range for both param-

eters could be. A range for meaningful �9 values that still impact the system is

�9 2 [0.01, 0.2], the range for meaningful �52 values is �52 2 [0.01, 0.8]. The plots

Page 27



Modeling the decreasing intervention e↵ect in digital health Lisa Gotzian

Figure 12: Long-term influences from walking leads to a stable trajectory of the attitude
At (left), the short-term influence mostly creates more variance in attitude At (right).
The top plots display the linear models of attitude At, the lower plots the overall
trajectories of At for the 80 dynamical systems with di↵erent parameter sizes for �9
and �52.
Left: �9 2 [0.01, 0.2], �52 = 0.01. Right: �9 = 0.01, �52 2 [0.01, 0.8].

demonstrate that the stronger the reinforcement and the higher their parameters

�52 and �9, the more they lift the overall level of the system, see the upper plots

in the figure.

However, although a higher influence �52 of the most recent walking experience

Wt�1 leads to a higher attitude At, see upper right plot, it mostly generates more

variance within attitude At and cannot create a stable overall trajectory, see

the lower right plot. The long-term behavior stock longWt on the other hand

constantly influences the attitude At and enables an overall increase of attitude

At, see upper left plot. At the same time, the variance in attitude At does not

rise with an increase in �9, see lower left plot. Consequently, the slower process of

longWt is crucial for the reinforcement from walking in the dynamical system to

work as it can create the steady overall reaction the faster process Wt�1 cannot.

3.2.3 The ideal intervention based on impact duration

When the decreasing intervention e↵ect is present, reinforcement from walking

can keep a stable attitude At, but is not able to increase it (overall attitude At=

0.79 + 0 t, F = 22.51, R2 = .01, n = 1873, p < .001) in the right plot in figure

11. Nonetheless, as already established, there is means to conquer the decreasing

intervention e↵ect. In an ideal intervention, notifications could be delivered just
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so the participant is responsive again after a certain recovery period with less

of a decreasing short-term response, see section 3.1. In figures 13 and 14, such

an ideal intervention is plotted. Notifications are sent daily instead of multiple

times per day and the participant seems to be responsive to the impact of the

stimulus, keeping a constant high impact of the notification. This means that in

this artificially ideal setting, reinforcement can indeed increase the overall attitude

At, by 20% in this case (At = 0.52 + .005 t, F = 503.96, R2 = 0.21, n = 1873,

p < .001 and At = 0.597 + 0.005 t, F =407.568, R2 = 0.179, n = 1873, p < .001),

see left lower plots in figures 13 and 14.

These two systems manifest that, as established, the timing of a notification

delivery is important to allow for a recovery period between stimuli. However, how

in response the behavior develops depends on a di↵erent factor, the duration of the

notification impact. These two intervals sound similar, yet, the recovery period

and the duration of the impact are two separate time intervals: after receiving a

notification, a participant might be more fascinated by walking, raising attitude

At. Already an hour later, they maybe do not remember the message in particular

and have a lower attitude towards walking At, but could still be annoyed if a new

notification came and would not react to it. This is shown in the first system in

figure 13: the recovery period in the top right plot is fairly long, while the impact

of the stimulus has a much shorter duration (lower right plot). In the second

system in figure 14, the duration of the impact is a bit longer in the lower right

plot, but still di↵erent from the recovery period (upper right plot).
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Figure 13: When notifications are sent daily, reinforcement from walking can create a
20% increase in attitude (At = 0.519 + 0.005 t, F =503.955, R2 = 0.212, n = 1873,
p < .001, SD = 0.122, length of recovery period = 49t, length of stimulus impact =
5t).

Figure 14: Daily notifications and a very strong influence from longW can increase the
duration of the notification impact, but cannot quite align it with the recovery period
(At = 0.597 + 0.005 t, F =407.568, R2 = 0.179, n = 1873, p < .001, SD = 0.14,
length of recovery period = 49t, length of stimulus impact = 12t, changed parameters
for longWt: �9 = 0.005, �59 = 1).

To facilitate an understanding of what influences this duration of the notifica-

tion impact, we calculate the impact duration after a notification has been sent

at time t. First, given a stimulus at t, the attitude At+1 at time t + 1 changes.

To return to the old value At before a notification after x time steps, we set
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At+x = At. We furthermore use that without any influence from past walking

and no stimuli, the closed form for At is At = �t
55A0. If we then assume a daily

notification, the impS after a recovery period is 0.85 �51 and the raw duration of

the impact is:

At+x = At

, duration of impact: x = log(At)�log(�55At+0.85 �51)
log(�55)

+ 1
(8)

The duration that is also pushed by the reinforcement from walking lasts slightly

longer:

) including longWt: x =
log
� At(�55��9�1)+�9�598
At(�55��9�1)+0.85�51(�55�1)+�9(�598�0.85�51)

�

log(�55��9)
(9)

Following this, the notification impact is six points in time (3h) in figure 13,

and 12 points in time (6h) including strong reinforcement in figure 14, assuming

the daily median is 8 bouts/day, see the lowest plots in figure 11. Still, both

notification impacts are shorter than the recovery period: it takes 49 time steps

to recover in both two systems, while the notification impact duration is six or

12 time steps respectively.

As described above, handling the decreasing intervention e↵ect by being mind-

ful of the recovery period can create an overall increase in attitude At. Adding

the notion of the duration of the impact on top, an intervention could accumulate

an even higher increase. If in the right moment, both the recovery period and the

duration of the stimulus were aligned, the person could be responsive again and

the impact of the notification would still be influencing At. Every time a notifi-

cation is sent, the attitude would then be higher than the last time a notification

was delivered, allowing an accumulation behavior to build up, see figure 15.

For these two intervals to align, one solution is to only define a small recov-

ery period (system solved for a small inhibitory e↵ect �12 = 0.68, At = 0.6 or a

small impact of the stimulus �51 = 0.07, At = 0.6), meaning people are quickly

responsive again. Underestimating the recovery period however defeats the pur-

pose of this model. Increasing reinforcement from walking in the system on the

other hand does not yield satisfactory results either. Analytically, there is no

solution and figure 14 shows that even a very large walking reinforcement is not

large enough to align with the recovery period. An alternative solution would be

to assume a longer lasting lag of the notification, so enabling the stimulus St to

operate for longer than one point in time. As an example, a thought-provoking

stimulus could lure people into checking back with the notification or fulfill a
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Figure 15: A hypothetical system in which the recovery period and the duration of the
impact of the notification are aligned. In this system, the attitude towards walking
At would not even fall below the old level any more and would exhibit a constant
accumulation behavior. The current system cannot account for this.

small task that extends the length of the stimulus e↵ect. The current system

based on the HeartSteps intervention does not include such a long impact of the

stimulus. The system in figure 15 is therefore only hypothetical.

As this section kept exploring the decreasing intervention e↵ect, it became

important to ensure people’s responsiveness in the ideal intervention. Warranting

the person has had a su�ciently long recovery period enables a larger impact of

the notification and supports internalization, such that the dynamical system

increases by 20% already. In an even more ideal intervention, one would have to

align people being responsive with the duration of the notification impact. The

current system cannot model this behavior, yet future interventions could start

experimenting with ways to raise the impact duration of the notification.
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3.3 The decision to walk

3.3.1 Simulating availability and the decision to walk

After having analyzed the dynamics tied to the separation of intervention and

internalization, we focus on the last integral part of this model: We introduced

the target walking as a binary decision. Walking depended on the linear utility

function for walking Ut that mirrors an immediate desire to actually engage in

walking. Ut included the attitude At as a value that is compared against potential

barriers. These barriers were the availability factors It and Et as well as the

adherence factors Wt�1 and dayWt:

Ut = �45At�1 � (�46It�1 + �47Et�1+

�42Wt�1 + �48 dayWt) + ✏1,t

By framing walking as a decision process, the moments when a person actually

engaged in walking became crucial. Linear models can potentially employ a strat-

egy to push internal reasons for walking. Even if external availability variables

such as ”being in a meeting” are high, pushing a person can still generate an

increase in steps (from a model perspective). Binary models on the other hand

have to shift the intervention focus from increasing the amount of steps towards

enabling those situations when a person actually walked. If a person is not avail-

able, the final decision to walk will not be low but no walking at all, matching

the idea of just-in-time in JITAI (Nahum-Shani et al., 2018).

Consequently, we analyze what drives the moments when a person engages

in walking. First, in this model and in the JITAI context, a substantial part

to these are a person’s availability (Choi et al., 2019). When a person is not

available, they do not engage in walking either. In the simulation, the model can

indeed reproduce this, an unavailable person is much more unlikely to walk, see

left plot in figure 16, as compared to when a person is available on the right. The

simulation demonstrates that the adherence functionality works, too. Without

the daily aggregate dayWt, people keep walking at the end of the day instead of

ceasing to walk, see figure 17. The fluctuations in p(Wt) in the top plots mostly

refer to availability.

These simulations illustrate how the decision to walk is a mechanism to con-

sider the JITAI components availability and adherence: if either of them is high,

the probability to walk will be rather low, allowing the utility Ut to be a reason-

able estimate of a good just-in-time moment.
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Figure 16: When a person is not available, they will be much more unlikely to walk
(left) as opposed to when available (right). This follows the availability concept in
JITAIs (Choi et al., 2019). The curves correspond to di↵erent segments of the logistic
function for p(Wt). Even a very strong impact of the attitude �45 paired with a high
attitude in that moment is very improbable to trigger a person to walk.

Figure 17: When taking a daily aggregation of walking into account, the probability
of walking p(Wt) drastically decreases at the end of the day. In the right plot, the
probability for walking p(Wt) declines the more a person has walked, in the left plot,
it does not.
left: dayWt = Wt, longWt = Wt.

3.3.2 The ideal intervention based on a customized delivery

After having discussed responsiveness and the duration of the notification impact,

the last consideration for an ideal intervention derived from this model is to tailor

the intervention to those moments in which it is also likely for a person to walk.

In JITAIs, a notification is essentially wasted if a person cannot walk in that given
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moment (Nahum-Shani et al., 2018). Hence, for a high impact of the notification,

an interventionist would have to send a notification when a person is responsive,

available and likely to adhere. This mirrors the idea of adaptation, the ”use of

ongoing (dynamic) information about the individual to modify the type, amount,

and timing of support” (Nahum-Shani et al., 2018, p. 448).

In figure 18, we simulate how a notification is sent at a customized time point.

It is delivered when two criteria are met. First, a person’s responsiveness needs to

be at a minimum 85% again (grey in the upper left plot). Second, the person needs

to be available and likely to adhere. We operationalize this as the probability to

walk p(Wt) being highest within 24 hours (black in the upper left plot). Only

when both criteria are fulfilled, a notification is delivered. For the standard daily

notification, the delivery time point is arbitrarily chosen. The simulation shows

that a person indeed walks more after a customized delivery (lower left plot). In

the standard delivery case, a high probability to walk and the notification time

point do not necessarily align (upper right plot). Walking after that notification

then proceeds to be fairly low (M = 1.31, SD = 0.95) (lower right plot). After

the custom notification, a person will engage in a significantly higher amount of

walking bouts (M = 3.12, SD = 0.96), which is significant on the p < .001-level

(t(27.78) = 6.41, p < .001).

In conclusion, the last layer of improving the intervention is to ensure the

notification is sent just-in-time: the probability for walking p(Wt) is high, a

person is both available and likely to adhere to walking. Future JITAIs can

follow this example and tailor the notification delivery by evaluating what the

decision process would look like in that very moment.
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Figure 18: A comparison of a customized notification delivery as opposed to a standard
daily notification. On the left, notifications are only sent if 1) responsiveness is at least
back up at 85% and if 2) the probability for walking p(Wt) is highest since 24 hours. The
di↵erence in walking after the notification for the customized delivery (M = 3.12, SD =
0.96) and the daily delivery (M = 1.31, SD = 0.95) is significant on the p < .001-level
(t(27.78) = 6.41, p < .001).
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4 Model estimation via secondary analysis

The simulations have explored the dynamics of separation of intervention and

internalization and what role tailoring an intervention delivery has. Next, the

parameters need to be estimated idiographically for each participant. We choose

a Bayesian estimation with MCMC sampling to match the probabilistic decision

framework (Gold and Shadlen, 2007). The target of the Bayesian model is Wt, a

binomial random variable, and its probability is given by p(Wt), leading to the

likelihood to walk being Bernoulli-distributed. We estimate the model using Stan

in R, running four chains in parallel.

p(Wt) = 1
1+e1�Ut

Likelihood:

Wt ⇠ Bernoulli(p(Wt))

(10)

The model has the following dependencies:

Ut = f(At�1,Wt�1, dayWt, X1, X2, ✏1,t)

At = f(At�1, Nt�1,Wt�1, longWt, X1, X2, ✏2,t)

Nt = f(Nt�1, X3)

dayWt = f(Wt)

longWt = f(Wt)

(11)

with X1 as data for It, X2 being data for Et and X3 corresponding to St.

The parameters all follow a flexible Beta prior, �ij ⇠ Beta(1, 1) 8i, j, and the

errors are normally distributed, ✏ij ⇠ N(0, 0.01) 8i, j 2 {1, 2}.

4.1 The data

The HeartSteps data is used as X1, X2 and X3 in the estimation process. For

internal and external barriers X1 and X2, a number of variables can determine

availability. First, high stress levels add to unavailability (Sarker et al., 2014),

as does any location that is not home, work or recreational (Choi et al., 2019).

People that are in transit or driving are also not available (Sarker et al., 2014).

Furthermore, bad weather conditions such as high temperature and precipitation

are considered as barriers to physical activity (Tucker and Gilliland, 2007). In

addition, in the HeartSteps intervention, participants reported individual barriers

towards walking such as ”tra�c” or ”sickness” on a daily basis (Klasnja et al.,

2019). Lastly, participants had the opportunity to respond to a walking sugges-
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tion with ”thumbs up” or ”thumbs down”. All these variables are used to derive

internal and external barriers It and Et. The variables used in this estimation

are reported in the appendix and all columns of the HeartSteps data have been

documented in a ReadMe (Gotzian, 2020).

This dataset’s key issue is that variables were not recorded continuously. For

internal barriers It and external barriers Et, the HeartSteps data only provides

data at three time points, the daily ecological momentary assessment (EMA),

when walking suggestions are sent and when a person replied to walking sug-

gestions. Only then, the GPS used to determine weather is recorded, a person’s

location is determined using Google place types (”DetectedActivity | Google APIs

for Android | Google Developers”, 2019) and the activity of a person is inferred

(”Place.Type | Places SDK for Android | Google Developers”, 2020). On average,

there are 175 availability data points per person (SD = 59). To augment the ex-

isting dataset, questions asking for a daily level of eg. the barriers are extended to

the entire day. The target walking Wt is the only data that is available for all time

points. The scarcity of the data discounts the possibilities to estimate a full dy-

namical model. We therefore present a strategy how to estimate the parameters

and acknowledge that the generalizability of the model will have to be assessed

in future studies. Additionally, we clearly specify how future interventions would

need to be altered in order to ensure this model’s validation.
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Figure 19: The estimates of the parameters after running 4 chains for 2000 iterations
in Stan for participants 31 and 36 that were chosen arbitrarily.
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4.2 Results

The estimation shows possible values for each parameter for participant 31 and

36, see figure 19. For these two users, the chains converge for nine of the twelve

parameters. In line with this model’s target on idiosyncratic behavior, the impact

of internal and external barriers �46 and �47 converged and di↵er across the two

users, as does the reinforcement of immediate walking �52. The impact strength

of the notification �51 and the inheritance of past attitudes �55 also seem to be

idiosyncratic. Though it mixed well across the chains, the unavailability impact

of the most recent walk �42 does not seem to have an influence for any of the users,

and the longterm reinforcement �59 and �9 is rather low for both, though not 0.

Unfortunately, the missing data is apparent for the habituation parameters �11

and �12 as well as the daily capacity �48. All three parameters do not converge

well. In general, the current estimation of walking, as expected, rarely beats the

very high baseline prevalence of not walking (M = 81.6%, SD = 6.3%), making

more data inevitable.

4.3 Considerations for future studies

For future studies, the estimation demonstrates three important aspects: the

exact definition of walking bouts, a continuous timeline and additional measure-

ments. First, the definition of walking bouts becomes important. We proposed

that a person is unavailable if he or she walked in the last time period (Choi

et al., 2019), however in this model, the most recent impact of Wt �42 seems to

have no e↵ect. One explanation could be that a person already not engaging

in walking because he or she has already gone for a walk is not as relevant for

short walking bouts. For longer walking bouts of >10 minutes, the unavailability

after a recent walk could still hold true, yet for these short walking bouts, the

estimation indicates it does not. The exact definition of a walking bout therefore

becomes crucial, as di↵erent lengths could imply di↵erent associated behaviors.

The second aspect is the importance of a continuous timeline, as opposed to

data collections only at decision points in JITAIs (Nahum-Shani et al., 2018).

First, a continuous timeline is crucial to validating the functionality of this

model’s internalization mechanism that is independent of decision points. More-

over, it would allow for more data than approximately 175 data points per person.

Furthermore, the parameters needed in the habituation processes �11 and �12 do

not yield interpretable results, the chains don’t converge for these two parameters.

On average, participants received 106 notifications throughout the intervention
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(SD = 15) which are not enough data points to assess a meaningful pattern of

habituation.

To enlarge the dataset while (i) ensuring an idiosyncratic estimation as well

as (ii) not sending even more notifications over longer periods of time, we pro-

pose assigning individuals to clusters that are then estimated collectively. One

clustering method for this is soft K-Means based on similarities (Stan Develop-

ment Team, 2018). Each person n 2 {1, ..., N} is randomly assigned to a cluster

zn 2 {1, ..., K}, zn ⇠ categorical(1/K). In the Bayesian clustering process, the

probability of each user’s data yn follows a multivariate normal distribution with

a mean of the assigned cluster mean µz and a fixed unit covariance matrix ⌃z,

yn ⇠ N(µz[n],⌃z[n]). This gives a likelihood of half the negative Euclidian dis-

tance from the cluster mean µz to the data point yn. Eventually, soft K-Means

returns clusters with those data points that have minimum Euclidian distance

to their cluster mean µz. The SRC model could then be validated with sets of

similar users that were assigned to the same cluster. At the same time, each

estimation would have higher validity as it utilizes more data points. Clustering

in return requires su�cient data for each cluster, longitudinally by a continuous

collection of data points such that clusters can be built in the first place based on

similarity, and laterally by more participants in general such that each cluster has

a meaningful number of users assigned to it. The HeartSteps data included 37

participants that are sought to be treated idiosyncratically (Klasnja et al., 2019).

As a rough estimate, if we assume half as many groups K= 20 with on average 10

participants of 106 notifications each, the intervention requires 200 participants.

Lastly, the data that is fed to the model comes from availability considerations

X1 and X2, from the notification X3 and from current and past walking. Espe-

cially internal and external barriers It and Et could be measured more rigorously

and more explicitly. New data could incorporate a clear collection of life circum-

stances that work as barriers such as ”writing a thesis”, ”being sick” or ”being in

quarantine”, to name a few examples. Continuous monitoring of a person’s sleep

via wristbands will also be essential. Depending on the intervention type, further

research on what belongs to the availability variables internal It and external Et

is required. To determine the essential availability variables for their interven-

tion type, interventionists could ask open questions on what people perceived to

be decisive when they were unavailable for walking. These could be collected

in a daily EMA. On top of that, questions like ”Are you available to stand up

and move?”, ”Why do you (not) stand up and move around for a minute?” and

”Please describe your context” could be asked with each notification (Choi et al.,
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2019, p. 10). Hypothetically, the variables assigned to internal and external bar-

riers should all show a similar barrier behavior and serve as switches when it

comes to the threshold to walk.

To validate the more intermediate compartments within this model, they will

have to be measured regularly as well. For attitude towards walking At, one

could send a rating question with each notification sent, asking ”How do you like

walking?”. At the same time, the impact of the daily aggregation of walking

could be assessed. For dayWt, one could ask how tired a person is in regards to

having walked a certain amount of steps that day. Measuring these intermediate

compartments like attitude will benefit the validation of the model as a whole.

Taken together, even if the estimation itself cannot yield su�cient results, it

sheds light on how a suitable dataset would need look like. Such a larger and

more meaningful dataset should enable researchers to validate the proposed SRC

model to a much larger extent and gain su�cient insights to the usefulness of

each compartment.
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5 Discussion

This work first intended to shed light on the separation of the decreasing interven-

tion e↵ect and an internalization process. It o↵ers a robust structure that can be

adapted for other intervention types. Second, it is supposed to advance the notion

of JITAIs by o↵ering a clearly specified dynamic hypothesis and computational

model of a digital health intervention for walking suggestions.

First, this dynamical model o↵ers a robust structure for any intervention type

based on the learning framework SRC aiming to model a separation of interven-

tion and internalization. We deem the model to be successful if it can be useful

in context. It therefore is kept generic enough to be adapted to the intervention

type. As a key mechanism, this model provides an approach to treat both the

decreasing intervention e↵ect and the idea of building practice of the desired be-

havior over a longer period of time. The immediate decreasing intervention e↵ect

follows a habituation mechanism (Rankin et al., 2009; Staddon, 2001) and in-

ternalization follows the concept of reinforcement for building practice (Skinner,

1953). schraefel (2020) proposed interventions to build practice, but also skills

and knowledge. Just like practice is built by using a reinforcement mechanism

in this SRC model, skills and knowledge could be internalized by slowly filling a

separate compartment over time. As an example for building self-management

skills, an intervention could be aimed at teaching people how to plan ahead. If

they realize they’ll have time in the next few hours, they could integrate a walk

into their plans for the near future without needing the notification to tell them

to walk.

All other compartments can be adjusted to the right context: an input like

a notification, call or nudge is processed via compartments like attitude, self-

e�cacy or motivation. This is then fed into a decision, together with availability

variables like sitting in a meeting, illness, deadline and adherence such as being

tired at the end of the day or having just engaged in walking. Potentially, other

variables that also influence the decision can be added. The decision informs the

binary physical activity that could include other categories on top such as a gym

visit, taking a virtual class or going for a jog, which is then aggregated to feed

back into the dynamical system, potentially at di↵erent time points as well. This

generic structure is shown in figure 20.

Second, we have proposed a model to explain the separation of interven-

tion and internalization, especially in the JITAI context. If the mechanisms and

dynamics of an intervention are well-researched, future interventions can be im-

proved. The simulation hinted that to some extent, the decreasing intervention
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Figure 20: A generic model structure based on this SRC model.

e↵ect could be a symptom of a low responsiveness after a notification. After a

recovery period, a participant is likely to be responsive again. JITAIs largely em-

phasize the importance of timing, and responsiveness could add to the four stages

of receptivity proposed by Choi (Choi et al., 2019). This time of low responsive-

ness could then be the cost of the intervention. Moreover, how long the positive

e↵ect of the stimulus lasts depends on the impact duration of the stimulus. To

ensure that the intervention is internalized as much as possible, the notification

delivery has to be tailored to a person’s needs. Accordingly, along with availabil-

ity and adherence, we propose responsiveness and the duration of the notification

impact as measures to pick the ideal moment for a notification when a person

is in the right state for it. Lastly, supposing that internalization indeed is due

to a reinforcement mechanism indicates that interventions can explicitly support

this feedback loop. As a general takeaway, this model emphasizes how the timing

of a notification can be improved and by that ultimately contributes to sending

better walking suggestions in JITAIs.

5.1 The model in context of past interventions

Setting this model into context, there have been heavy influences from fluid analo-

gies from control systems engineering. Fluid analogies are a formalized framework

from engineering to portray system behavior and recently, have been employed to

assess the impact of digital health interventions (Riley et al., 2016; Conroy et al.,

2019). The models are also set up in the JITAI context and estimate parameters
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idiosyncratically. One recent fluid analogy model uses Social Cognitive Theory

(SCT) to describe walking interventions and could provide a framework to inter-

nalize skills and knowledge (Martin et al., 2020; Riley et al., 2016). Internalization

could match the idea of self-e�cacy and self-management skills building up, both

compartments that are present in the SCT model.

Conveniently, a control system is usually initiated in a steady state and then

receives inputs. In digital health interventions, these inputs correspond to notifi-

cations. This model follows their lead, treats notifications as inputs and derives

the system’s steady state as an initial simulation condition. Our model further-

more builds on their ideas for decisive diagrams with incorporated mathematical

specifications. We also utilize their approach to simulate the dynamical system

in di↵erent scenarios. By using existing model frameworks, they largely benefit

from past methodological advances and clear definitions which this model builds

on.

However, one of these key definitions indicates that all energy is conserved and

all dynamics are treated as fluids that flow between compartments (Albertos and

Mareels, 2010). This notion relies on linear relationships between compartments.

This way, one is able to conduct certain analyses, identify the system and to

generally profit from control system principles. In the case of the decision to walk

we implemented, there is a flow from the utility Ut to walking Wt, but not for a

decision against walking. If the threshold cannot be reached, the accumulation

of t will not be saved for point t + 1, but will be re-calculated for the next time

step. Though past values influence the current time step, it is unlikely for the

energy from utility to be conserved. Additionally, the value which is passed to the

walking compartment Wt will be 0 or 1, not a continuous value that reflects by

how far the threshold has been passed. This nonlinear bottleneck would therefore

violate the key definition of energy conservation in fluid analogies. Though control

systems are still able to model such a system, it may not be the most advantageous

approach.

Another aspect is this system’s heavy reliance on time aggregations. Previous

control systems models have not explicitly included time aggregations in their

system setup (Martin et al., 2020; Freigoun et al., 2017; Conroy et al., 2019),

though di↵erent frequencies are essential in the later analysis of results. Con-

trol systems have also not used di↵erent frequency intervals of the notification

(Conroy et al., 2019; Martin et al., 2020) which we strongly suggest likewise. We

acknowledge that though not common, fluid analogies have the theoretical ca-

pacity to represent this model and decide against the full use of control systems
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out of simplicity. We choose a Bayesian statistical inference model with MCMC

sampling in accordance with the binary decision bottleneck.

Among others, a di↵erent method to approach dynamical systems is dynamical

networks which are increasingly used in psychopathology (Robinaugh et al., 2019;

Haslbeck et al., 2019; Burger et al., 2020). Similar to control systems, they analyze

complex systems by simulation first and derive consequence based on dynamics.

Interestingly, recently, there has been an emphasis on slow and fast processes

(Lunansky et al., 2020) and on di↵erent time intervals (Robinaugh et al., 2019).

These studies considered a slow-changing rate parameter, which this model now

also includes as �9 in equation 4.5. In addition, the formulation of discrete-time

equations was motivated and informed by the advances of a network model on

panic disorder (Robinaugh et al., 2019).

In essence, the model as a whole builds on fluid analogies, it adopts the notion

of inputs and steady states from control systems engineering, but adjusts it to a

binary decision and to temporal di↵erences. We therefore suggest future inter-

ventions to include both approaches, networks and fluid analogies, as valuable

resources for specifying their models.

5.2 Propositions for future interventions

Focusing on coming interventions, we derive key suggestions from the simulated

dynamics of this model.

Our goal is to answer key questions for an e↵ective experimental design

(Sheeran et al., 2017): what are strategies for promoting behavior change and

under what circumstances? We recommend there need to be (i) su�ciently large

recovery periods to allow responsiveness to rise again. (ii) Ideally, interventions

are optimized to sending longer-impacting notifications that are also (iii) deliv-

ered just-in-time such that (iv) people build practice and engage in the behavior

independently. As the implementation of the decreasing intervention e↵ect was in-

spired by the physiological concept of habituation, interventionists can potentially

follow research on habituation and correspondingly, apply it to a digital health

intervention (Rankin et al., 2009). Nonetheless, the subtleties and di↵erences be-

tween the two e↵ects will need to be evaluated. Is the decrease stimulus-specific

like habituation or will changing the medium not result in any new reaction?

Then it will correspond more to a general sensory adaptation (Rankin et al.,

2009; Groves and Thompson, 1970). Will the decreasing intervention e↵ect show

same rate sensitivity such that after a stimulus with a di↵erent frequency, the

recovery period changes as well (Staddon, 2001)? Does the model need an addi-
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tional cascade to model a decreasing stimulus impact even with su�cient recovery

periods (Staddon, 2001)? Are there maybe additional factors such as annoyance

that influence the decreasing reaction, too? On top of that, interventionists can

decide which compartments are valuable to foster in their intervention of choice.

What needs to be supported to promote internalization of knowledge, skills and

practice? How could participants possibly build skills and internalize knowledge?

We summarized possible suggestions for more meaningful notifications in future

interventions in table 1.

Model features Properties Future interventions

Decreasing inter-

vention e↵ect

Frequency of stimuli

(Staddon, 2001)

Send notifications at di↵erent rates to al-

low for recovery periods between stimuli.

Spontaneous recovery

(Rankin et al., 2009)

Stop sending notifications for a while to

give a break if a person starts showing a de-

creasing response.

Duration of stimulus im-

pact

Send thought-provoking notifications

or require the participant to interact with it.

This way, the stimulus impact lasts longer

until a person is responsive enough to re-

ceive a new notification and internalizes as

much as possible.

Stimulus specificity

(Rankin et al., 2009)

O↵er a range of stimuli: di↵erent notifi-

cation tone or light, di↵erent app (eg. iMes-

sage and HeartSteps app).

Internalization &

reinforcement

Focus on the gain (La-

timer et al., 2008; Tversky

and Kahneman, 1992)

Choose to support both reinforcements from

walking targeted towards the attitude to-

wards walking. Write motivating messages

that focus on the gain (gain-framed mes-

sage) to support the reinforcement of walk-

ing.

Immediate reinforcement

(Skinner, 1953)

Choose to support the immediate reinforce-

ment from walking. Send a notification after

a person has walked to positively reinforce

walking behavior.

Di↵erent time aggrega-

tions

Support a variety of timescales: Give sum-

maries and positive feedback of walking on a

weekly, daily and hourly level This con-

tributes to more relevant, timely feedback

as suggested by health behavior motivation

theories (Strecher et al., 1995; Nahum-Shani

et al., 2018).
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Internalization of knowl-

edge and skills

Shift the intervention design from support-

ing people to engage in the desired behavior

to empowering people such that they build

knowledge, skills and practice and engage in

the behavior independently of the interven-

tion (schraefel and Hekler, 2020).

The decision to

walk

Notifications have to be

tailored to reflect

a) unavailability

Let participants reflect on the barriers

that prevented them from walking in the

daily EMA and support them in reducing

these barriers. At the same time, adjust po-

tential feedback to the users to be targeted

towards the barriers, not to their attitude

towards walking.

Collect availability variables in broader cat-

egories (here internal and external barri-

ers) and treat these potential barriers col-

lectively.

and b) capacity Stop sending notification at the end of the

day if a person has walked enough to not

waste a notification.

Table 1: Suggestions for future interventions based on the SRC model features.
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5.3 Outlook

This work aimed to understand digital health participants as a whole, describe

their behavioral trajectories and by that allow for a separation of intervention

and internalization. It operates at the intersection of statistical and mechanistic

models, as it intends to work with existing data to analyze and articulate a

dynamic hypothesis while it has also derived mechanisms from the literature and

specified a-priori beliefs beforehand.

This model originated from a control systems-informed way of thinking, but

has altered their approach. In that regard, it o↵ers a new perspective, but needs

to be evaluated with care. For the sake of simplicity, the model was limited to

only include negative exogenous factors as availability. It cannot account for any

positive external influence like social support, good weather or circumstances at

work. In addition, the creation of the model was informed by the literature and

by the HeartSteps data. As the sample size was rather small, the model could

only be validated partially. Lastly, measuring psychological variables like attitude

over time can potentially be tedious. Asking the right amount questions at the

right times to both measure that variable and not annoy participants will be a

challenge.

While o↵ering a new perspective, the model includes new paths regarding col-

lective variables, decision theory in digital health, time aggregations of slow and

fast processes as well as the use of the operant learning SRC framework. Most

importantly, it stresses the importance of how interventions can foster internal-

ization of the knowledge, skills and behavior they are trying to convey. It sets a

research agenda towards simpler models with fewer compartments that are still

able to su�ciently explain dynamics in the data. On top of that, it challenges

JITAI designers to incorporate the di↵erent stages of receptivity into the back-

bone of their models. Moreover, it shifts the focus of interventions from assessing

a short-term e↵ect towards re-thinking ways to support participants to build the

knowledge, skills and practice needed to engage in that behavior. In addition, it

raises questions for future interventions. Taken this model’s structure, what ad-

ditional compartments are necessary to properly describe walking interventions?

Is the perception of the availability also important for the attitude towards walk-

ing? Is aligning the recovery period and the duration of the notification impact

advisable? Or will it discourage participants because it becomes time-consuming

and almost a burden? What are ideal moments to send walking suggestions? How

does binary walking need to be operationalized for a digital health intervention to

foster more walking? What are decisions in digital health influenced by? What
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do participants need to accumulate to internalize the intervention? Now is the

time to start answering these questions with simple JITAIs in digital health.
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6 Appendix

The data

The simulation and validation is based on the HeartSteps data. A full ReadMe

of the data and a documentation of the data cleaning process can be found at on

GitHub (Gotzian, 2020).

Type Variable Description Available time

points

hectic 5-point

Likert

scale

rating: “How hectic was your day to-

day?”, asked every day

all-day EMA1

travel binary if a person traveled that day all t in T

location.category binary location category (”work”, ”home”

or the Google Place Type) based

on the GPS coordinate, ”home”,

”gym”, ”unknown”, ”work”, or places

starting with ”rvpark”, ”park” or

”campground” are counted as avail-

able, other places such as ”bakery” or

”store,point of interest,establishment”,

”grocery or supermarket” are counted

as unavailable

EMA, suggestion,

response2

recognized.activity binary Google Activity Recognition result; the

detected activity type with the high-

est confidence level, evaluated within

90 seconds of time point, ”still”

and ”unknown” are available, ”aug-

mented vehicle”, ”in vehicle”, ”on foot”

and ”on bicycle” are unavailable

EMA, suggestion,

response

barrier.busy binary barrier: answer “No time/too busy” to

barrier question3
all-day EMA

barrier.ill binary barrier: answer “Illness or injury” to

barrier question

all-day EMA

barrier.sore binary barrier: answer “Sore muscles” to bar-

rier question

all-day EMA

barrier.personal binary barrier: answer “Personal safety” to

barrier question

all-day EMA

response binary evaluation of the suggestion by select-

ing ”thumbs up” or ”thumbs down”,

”thumbs up” is used as available,

”thumbs down”, ”no response” or

”snoozed” is taken as unavailable

response
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sleep binary assumed unavailability every day be-

tween 10pm and 6am (no actual sleep

data)

all t in T

Table 2: Internal data used for X1.
1
all-day EMA: response was given at daily EMA time, the value was extended for the
entire day
2
EMA, suggestion, response: at time of daily EMA, at time of suggestion and at time
of response to suggestion via thumbs up/down
3
barrier question: ”Did any of the following make it di�cult for you to be active today?”

Figure 21: Distribution of variables used as internal barriers It. Data is available for
three time points only, the completion of the EMA, when a walking suggestion is sent
and when a participant responded to the suggestion.
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Type Variable Description Available time

points

weather.condition binary weather: current weather condition

classification from Weather Under-

ground’s API, based on the GPS

coordinate, ”ice pellets”, ”light freezing

fog”, any kind of rain or snow as well as

”thunderstorm” is used as unavailable

EMA, suggestion,

response

temperature binary weather: temperature in Celsius, based

on the GPS coordinate. Tempera-

ture above 26°C is considered as criti-

cal according to German labor law (Ar-

beitsstättenrichtlinie A 3.5, 2010). Ex-

posure to temperatures below -15°C can

harm the respiratory tract, for untrained

lungs, -5°C could already be harmful

(Kennedy and Faulhaber, 2018). Tem-

peratures of 27°C and higher as well as

below -5°C are therefore set to unavail-

able.

EMA, suggestion,

response

windspeed binary weather: windspeed based on the GPS

coordinate. Windspeed above 40mph

is considered a storm (”Deutscher Wet-

terdienst - Windwarnskala”, 2020) and

therefore used as unavailable.

EMA, suggestion,

response

precipitation.chance [0,1] weather: precipitation chance (between

0 and 1) up to 60 minutes after time

point, based on the GPS coordinate

EMA, suggestion,

response

snow binary weather: if there is snowfall, based on

the GPS coordinate

EMA, suggestion,

response

barrier.weather binary barrier: answer “Poor weather” to bar-

rier question

all-day EMA

barrier.place binary barrier: answer “No place to be active”

to barrier question

all-day EMA

barrier.tra�c binary barrier: answer “Tra�c safety” to bar-

rier question

all-day EMA

barrier.other binary barrier: answer “Other” to barrier

question

all-day EMA

Table 3: External data used for X2.
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Data Type Variable Description Available time

points

X3 St binary if a notification has been sent at t all t in T

target Wt binary if a person walked > 3 minutes or >

500 steps at t

all t in T

Table 4: Data for notification delivery and walking.

Figure 22: Distribution of variables used as external barriers Et. Data is available for
three time points only, the completion of the EMA, when a walking suggestion is sent
and when a participant responded to the suggestion.
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